OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A916–A923

Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures

Young Min Song, Yonkil Jeong, Chan Il Yeo, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A916-A923 (2012)
http://dx.doi.org/10.1364/OE.20.00A916


View Full Text Article

Enhanced HTML    Acrobat PDF (1287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (Voc) and fill factor (FF).

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6805) Thin films : Theory and design

ToC Category:
Photovoltaics

History
Original Manuscript: July 13, 2012
Revised Manuscript: September 15, 2012
Manuscript Accepted: October 7, 2012
Published: October 15, 2012

Citation
Young Min Song, Yonkil Jeong, Chan Il Yeo, and Yong Tak Lee, "Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures," Opt. Express 20, A916-A923 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A916


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Swanson, “The promise of Concentrators,” Prog. Photovolt. Res. Appl.8(1), 93–111 (2000). [CrossRef]
  2. G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cell,” Renew. Sustain. Energy Rev.13(9), 2645–2652 (2009). [CrossRef]
  3. D. Friedman, “Progress and challenges for next-generation high-efficiency multijunction solar cells,” Curr. Opin. Solid State Mater. Sci.14(6), 131–138 (2010). [CrossRef]
  4. M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells75(1-2), 261–269 (2003). [CrossRef]
  5. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  6. S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells94(5), 869–877 (2010). [CrossRef]
  7. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983). [CrossRef] [PubMed]
  8. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  9. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  10. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express19(S2Suppl 2), A108–A117 (2011). [CrossRef] [PubMed]
  11. S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1-3), 1–35 (2010). [CrossRef]
  12. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).
  13. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  14. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009). [CrossRef] [PubMed]
  15. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola-shaped subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  16. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007). [CrossRef]
  17. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009). [CrossRef]
  18. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  19. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  20. Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology19(25), 255605 (2008). [CrossRef] [PubMed]
  21. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  22. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007). [CrossRef]
  23. J. Nelson, The Physics of Solar Cells (Imperical College Press, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited