OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11700–11709

Classical simulations of electron emissions from H 2 + by circularly polarized laser pulses

Cheng Huang, Zhihua Li, Yueming Zhou, Qingbin Tang, Qing Liao, and Peixiang Lu  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 11700-11709 (2012)
http://dx.doi.org/10.1364/OE.20.011700


View Full Text Article

Enhanced HTML    Acrobat PDF (1190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the classical fermion molecular dynamics model (FMD), we investigated electron emissions from H 2 + by circularly polarized laser pulses. The obtained electron momentum distribution clearly shows an angular shift relative to the expected direction for H 2 + aligned parallel to the polarization plane, which is in good agreement with the recent experimental result. By tracing the classical trajectory, we provide direct evidence for the electron delayed emission with respect to the instant when the electric field is parallel to the molecular axis, which was regarded as the origin of the angular shift in the electron momentum distribution. Furthermore, we find that the angular shift decreases with increasing the laser wavelength.

© 2012 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(260.3230) Physical optics : Ionization
(270.6620) Quantum optics : Strong-field processes

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 4, 2012
Published: May 8, 2012

Citation
Cheng Huang, Zhihua Li, Yueming Zhou, Qingbin Tang, Qing Liao, and Peixiang Lu, "Classical simulations of electron emissions from H2+ by circularly polarized laser pulses," Opt. Express 20, 11700-11709 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-11700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Agostini, F. Fabre, G. Mainfray, and G. Petite, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett.42, 1127–1130 (1979). [CrossRef]
  2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science320, 1614–1617 (2008). [CrossRef] [PubMed]
  3. M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić, H. C. Bandulet, H. Pépin, J. C. Kieffer, R. Dörner, D. M. Villeneuve, and P. B. Corkum, “Laser-induced electron tunneling and diffraction,” Science320, 1478–1482 (2008). [CrossRef] [PubMed]
  4. H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sub-laser-cycle electron pulses for probing molecular dynamics,” Nature417, 917–922 (2002). [CrossRef] [PubMed]
  5. Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, “Correlated electron emmision in multiphoton double ionization,” Nature405, 658–661 (2000). [CrossRef] [PubMed]
  6. Y. Zhou, Q. Liao, and P. Lu, “Asymmetric electron energy sharing in strong-field double ionization of helium,” Phys. Rev. A82, 053402 (2010). [CrossRef]
  7. S. Micheau, Z. Chen, A. T. Le, J. Rauschenberger, M. F. Kling, and C. D. Lin, “Accurate retrieval of target structures and laser parameters of few-cycle pulses from photoelectron momentum spectra,” Phys. Rev. Lett.102, 073001 (2009). [CrossRef] [PubMed]
  8. J. Wu, M. Meckel, S. Voss, H. Sann, M. Kunitski, L. Ph. H. Schmidt, A. Czasch, H. Kim, T. Jahnke, and R. Dörner, “Coulomb asymmetry in strong field multielectron ionization of diatomic molecules,” Phys. Rev. Lett.108, 043002 (2012). [CrossRef] [PubMed]
  9. Q. Liao, Y. Zhou, C. Huang, and P. Lu, “Multiphoton rabi oscillations of correlated electrons in strong-field nonsequential double ionization,” New J. Phys.14, 013001 (2012). [CrossRef]
  10. P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett.62, 1259–1262 (1989). [CrossRef] [PubMed]
  11. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulanderc, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett.70, 1599–1602 (1993). [CrossRef] [PubMed]
  12. G. G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization: a classical model,” J. Phys. B27, L703–L708 (1994). [CrossRef]
  13. M. Lein, J. P. Marangos, and P. L. Knight, “Electron diffraction in above-threshold ionization of molecules,” Phys. Rev. A66, 051404(R) (2002). [CrossRef]
  14. C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5, 335–338 (2009). [CrossRef]
  15. W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. He, S. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Xu, “Classical aspects in above-threshold ionization with a mid-infrared strong laser field,” Phys. Rev. Lett.103, 093001 (2009). [CrossRef] [PubMed]
  16. C. P. J. Martiny, M. Abu-samha, and L. B. Madsen, “Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses,” J. Phys. B42, 161001 (2009). [CrossRef]
  17. N. Takemoto and A. Becker, “Multiple ionization bursts in laser-driven hydrogen molecular ion,” Phys. Rev. Lett.105, 203004 (2010). [CrossRef]
  18. M. Odenweller, N. Takemoto, A. Vredenborg, K. Cole, K. Pahl, J. Titze, L. Ph. H. Schmidt, T. Jahnke, R. Dörner, and A. Becker, “Strong field electron emission from fixed in space H2+ ions,” Phys. Rev. Lett.107, 143004 (2011). [CrossRef] [PubMed]
  19. C. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett.105, 113003 (2010). [CrossRef] [PubMed]
  20. D. A. Telnov and S. I. Chu, “Low-energy structure of above-threshold-ionization electron spectra: role of the coulomb threshold effect,” Phys. Rev. A83, 063406 (2011). [CrossRef]
  21. N. B. Delone and V. P. Krainov, “Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation,” J. Opt. Soc. Am. B8, 1207–1211 (1991). [CrossRef]
  22. S. L. Haan, L. Breen, A. Karim, and J. H. Eberly, “Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization,” Phys. Rev. Lett.97, 103008 (2006). [CrossRef] [PubMed]
  23. X. Wang and J. H. Eberly, “Effects of elliptical polarization on strong-field short-pulse double ionization,” Phys. Rev. Lett.103, 103007 (2009). [CrossRef] [PubMed]
  24. Y. Zhou, C. Huang, Q. Liao, W. Hong, and P. Lu, “Control the revisit time of the electron wave packet,” Opt. Letters36, 2758–2760 (2011). [CrossRef]
  25. F. Mauger, C. Chandre, and T. Uzer, “Recollisions and correlated double ionization with circularly polarized light,” Phys. Rev. Lett.105, 083002 (2010). [CrossRef] [PubMed]
  26. P. B. Lerner, K. J. LaGattuta, and J. S. Cohen, “Ionization of helium by a short pulse of radiation: a fermi molecular-dynamics calculation,” Phys. Rev. A49, R12–R15 (1994). [CrossRef] [PubMed]
  27. C. Huang, Y. Zhou, A. Tong, Q. Liao, W. Hong, and P. Lu, “The effect of molecular alignment on correlated electron dynamics in nonsequential double ionization,” Opt. Express19, 5627–5634 (2011). [CrossRef] [PubMed]
  28. S. L. Haan, Z. S. Smith, K. N. Shomsky, and P. WPlantinga, “Anticorrelated electrons from weak recollisions in nonsequential double ionization,” J. Phys. B41, 211002 (2008). [CrossRef]
  29. Y. Zhou, Q. Liao, and P. Lu, “Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold,” Phys. Rev. A80, 023412 (2009). [CrossRef]
  30. L. Wilets, E. M. Henley, M. Kraft, and A. D. MacKellar, “Classical many-body model for heavy-ion collisions incorporating the pauli principle,” Nucl. Phys. A282, 341–350 (1977). [CrossRef]
  31. C. L. Kirschbaum and L. Wilets, “Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles,” Phys. Rev. A21, 834–841 (1980). [CrossRef]
  32. J. S. Cohen, “Molecular effects on antiproton capture by H2 and the states of pp¯ formed,” Phys. Rev. A56, 3583–3596 (1997). [CrossRef]
  33. E. Lötstedt, T. Kato, and K. Yamanouchi, “Classical dynamics of laser-driven D3+,” Phys. Rev. Lett.106, 203001 (2011). [CrossRef] [PubMed]
  34. L. Arissian, C. Smeenk, F. Turner, C. Trallero, A. V. Sokolov, D. M. Villeneuve, A. Staudte, and P. B. Corkum, “Direct test of laser tunneling with electron momentum imaging,” Phys. Rev. Lett.105, 133002 (2010). [CrossRef]
  35. X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A66, 033402 (2002). [CrossRef]
  36. G. L. Kamta and A. D. Bandrauk, “Imaging electron molecular orbitals via ionization by intense femtosecond pulses,” Phys. Rev. A74, 033415 (2006). [CrossRef]
  37. Y. Zhou, Q. Liao, and P. Lu, “Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionizaion,” Opt. Express18, 16025–16034 (2010). [CrossRef] [PubMed]
  38. D. A. Wasson and S. E. Koonin, “Molecular-dynamics simulations of atomic ionization by strong laser fields,” Phys. Rev. A39, 5676–5685 (1989). [CrossRef] [PubMed]
  39. Y. Zhou, C. Huang, A. Tong, Q. Liao, and P. Lu, “Correlated electron dynamics in nonsequential double ioniza-tion by orthogonal two-color laser pulses,” Opt. Express19, 2301–2308 (2011). [CrossRef] [PubMed]
  40. T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A52, R2511–R2514 (1995). [CrossRef] [PubMed]
  41. T. Seideman, M. Yu. Ivanov, and P. B. Corkum, “Role of electron localization in intense-field molecular ionization,” Phys. Rev. Lett.75, 2819–2822 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited