OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11830–11837

Room temperature strong coupling effects from single ZnO nanowire microcavity

Ayan Das, Junseok Heo, Adrian Bayraktaroglu, Wei Guo, Tien-Khee Ng, Jamie Phillips, Boon S. Ooi, and Pallab Bhattacharya  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11830-11837 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ~100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 μJ/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by time-resolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density.

© 2012 OSA

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 29, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 5, 2012
Published: May 10, 2012

Ayan Das, Junseok Heo, Adrian Bayraktaroglu, Wei Guo, Tien-Khee Ng, Jamie Phillips, Boon S. Ooi, and Pallab Bhattacharya, "Room temperature strong coupling effects from single ZnO nanowire microcavity," Opt. Express 20, 11830-11837 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  2. Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B52(3), 1800–1805 (1995). [CrossRef]
  3. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  4. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys.71(5), 1591–1639 (1999). [CrossRef]
  5. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010). [CrossRef]
  6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett.63(3), 240–243 (1989). [CrossRef] [PubMed]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett.64(21), 2499–2502 (1990). [CrossRef] [PubMed]
  8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006). [CrossRef] [PubMed]
  9. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  10. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science298(5591), 199–202 (2002). [CrossRef] [PubMed]
  11. A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A53(6), 4250–4253 (1996). [CrossRef] [PubMed]
  12. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A.100(26), 15318–15323 (2003). [CrossRef] [PubMed]
  13. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  14. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011). [CrossRef] [PubMed]
  15. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett.100(4), 047401 (2008). [CrossRef] [PubMed]
  16. G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett.93(5), 051102 (2008). [CrossRef]
  17. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B93(2-3), 331–337 (2008). [CrossRef]
  18. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett.92(1), 011127 (2008). [CrossRef]
  19. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett.94(6), 061103 (2009). [CrossRef]
  20. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett.97(14), 147401 (2006). [CrossRef] [PubMed]
  21. L. Sun, H. Dong, W. Xie, Z. An, X. Shen, and Z. Chen, “Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod,” Opt. Express18(15), 15371–15376 (2010). [CrossRef] [PubMed]
  22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett.99(16), 161104 (2011). [CrossRef]
  23. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002). [CrossRef]
  24. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett.86(2), 024108 (2005). [CrossRef]
  25. G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011). [CrossRef] [PubMed]
  26. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale3(7), 2783–2800 (2011). [CrossRef] [PubMed]
  27. G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B77(8), 085310 (2008). [CrossRef]
  28. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008). [CrossRef]
  29. R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett.93(21), 211105 (2008). [CrossRef]
  30. J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B81(12), 125305 (2010). [CrossRef]
  31. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res.247(6), 1424–1447 (2010). [CrossRef]
  32. H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett.97(14), 146402 (2006). [CrossRef] [PubMed]
  33. J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett.101(14), 146404 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited