OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11855–11862

Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator

Nebiyu A. Yebo, Sreeprasanth Pulinthanathu Sree, Elisabeth Levrau, Christophe Detavernier, Zeger Hens, Johan A. Martens, and Roel Baets  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11855-11862 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Portable, low cost and real-time gas sensors have a considerable potential in various biomedical and industrial applications. For such applications, nano-photonic gas sensors based on standard silicon fabrication technology offer attractive opportunities. Deposition of high surface area nano-porous coatings on silicon photonic sensors is a means to achieve selective, highly sensitive and multiplexed gas detection on an optical chip. Here we demonstrate selective and reversible ammonia gas detection with functionalized silicon-on-insulator optical micro-ring resonators. The micro-ring resonators are coated with acidic nano-porous aluminosilicate films for specific ammonia sensing, which results in a reversible response to NH3 with selectivity relative to CO2. The ammonia detection limit is estimated at about 5 ppm. The detectors reach a steady response to NH3 within 30 and return to their base level within 60 to 90 seconds. The work opens perspectives on development of nano-photonic sensors for real-time, non-invasive, low cost and light weight biomedical and industrial sensing applications.

© 2012 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: March 5, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 30, 2012
Published: May 10, 2012

Nebiyu A. Yebo, Sreeprasanth Pulinthanathu Sree, Elisabeth Levrau, Christophe Detavernier, Zeger Hens, Johan A. Martens, and Roel Baets, "Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator," Opt. Express 20, 11855-11862 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. H. Tran, H. P. Chan, M. Thurston, P. Jackson, C. Lewis, D. Yates, G. Bell, and P. S. Thomas, “Breath analysis of lung cancer patients using an electronic nose detection System,” IEEE Sens. J.10(9), 1514–1518 (2010). [CrossRef]
  2. G. W. Hunter, J. Xu, P. G. Neudeck, D. B. Makel, B. Ward, and C. C. Liu, “Intelligent chemical sensor systems for in-space safety applications,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Rep AIAA-06–58419(2006).
  3. A. B. Kanu and H. H. Hill., “Ion mobility spectrometry detection for gas chromatography,” J. Chromatogr. A1177(1), 12–27 (2008). [CrossRef] [PubMed]
  4. V. Ruzsanyi, J. I. Baumbach, S. Sielemann, P. Litterst, M. Westhoff, and L. Freitag, “Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers,” J. Chromatogr. A1084(1-2), 145–151 (2005). [CrossRef] [PubMed]
  5. C. Wang and A. B. Surampudi, “An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations,” Meas. Sci. Technol.19(10), 105604 (2008). [CrossRef]
  6. J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt.45(36), 9230–9237 (2006). [CrossRef] [PubMed]
  7. X. Wang, N. Miura, and N. Yamazoe, “Study of WO3-based sensing material for NH3 and NO detection,” Sens. Actuators B Chem.66(1–3), 74–76 (2000). [CrossRef]
  8. F. Winquist, A. Spetz, I. Lundstrom, and B. Danielsson, “Determination of ammonia in air and aqueous samples with a gas-sensitive semiconductor capacitor,” Anal. Chim. Acta164, 127–138 (1984). [CrossRef]
  9. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009). [CrossRef]
  10. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  11. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J.1(4), 225–235 (2009). [CrossRef]
  12. N. A. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. Van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett.21(14), 960–962 (2009). [CrossRef]
  13. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron.23(7), 939–944 (2008). [CrossRef] [PubMed]
  14. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express18(11), 11859–11866 (2010). [CrossRef] [PubMed]
  15. R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010). [CrossRef] [PubMed]
  16. L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A.98(8), 4617–4621 (2001). [CrossRef] [PubMed]
  17. P. Heiduschka, M. Preschel, M. Rosch, and W. Gopel, “Regeneration of an electropolymerised polypyrrole layer for the amperometric detection of ammonia,” Biosens. Bioelectron.12(12), 1227–1231 (1997). [CrossRef]
  18. A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J.8(3), 269–273 (2008). [CrossRef]
  19. R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Quantum Sensing and Nanophotonic Devices VIII, Proc. of SPIE 7945, 79450K.
  20. P. H. Rogers and S. Semancik, “Development of optimization procedures for application-specific chemical sensing,” Sens. Actuators B Chem.163(1), 8–19 (2012). [CrossRef]
  21. T. Sathitwitayakul, M. V. Kuznetsov, I. P. Parkin, and R. Binions, “The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis,” Mater. Lett.75, 36–38 (2012). [CrossRef]
  22. S. Eslava, M. R. Baklanov, C. E. A. Kirschhock, F. Iacopi, S. Aldea, K. Maex, and J. A. Martens, “Characterization of a molecular sieve coating using ellipsometric porosimetry,” Langmuir23(26), 12811–12816 (2007). [CrossRef] [PubMed]
  23. A. M. Doyle, G. Rupprechter, N. Pfänder, R. Schlögl, C. E. A. Kirschhock, J. A. Martens, and H.-J. Freund, “Ultra-thin zeolite films prepared by spin-coating silicalite-1 precursor solutions,” Chem. Phys. Lett.382(3–4), 404–409 (2003). [CrossRef]
  24. G. J. Kramer, R. A. Van Santen, C. A. Emeis, and A. K. Nowak, “Understanding the acid behavior of zeolites from theory and experiments,” Nature363(6429), 529–531 (1993). [CrossRef]
  25. S. P. Sree, J. Dendooven, D. Smeets, D. Deduytsche, A. Aerts, K. Vanstreels, M. R. Baklanov, J. W. Seo, K. Temst, A. Vantomme, C. Detavernier, and J. A. Martens, “Spacious and mechanically flexible mesoporous silica thin film composed of an open network of interlinked nanoslabs,” J. Mater. Chem.21(21), 7692–7699 (2011). [CrossRef]
  26. C. E. A. Kirschhock, V. Buschmann, S. Kremer, R. Ravishankar, C. J. Y. Houssin, B. L. Mojet, R. A. van Santen, P. J. Grobet, P. A. Jacobs, and J. A. Martens, “Zeosil Nanoslabs: Building Blocks in nPr4N+- Mediated Synthesis of MFI Zeolite,” Angew. Chem. Int. Ed.40(14), 2637–2640 (2001). [CrossRef]
  27. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev.110(1), 111–131 (2010). [CrossRef] [PubMed]
  28. S. P. Sree, J. Dendooven, T. I. Korányi, G. Vanbutsele, K. Houthoofd, D. Deduytsche, C. Detavernier, and J. A. Martens, “Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement,” Catal. Sci. Technol.1(2), 218–221 (2011). [CrossRef]
  29. C. Detavernier, J. Dendooven, S. Pulinthanathu Sree, K. F. Ludwig, and J. A. Martens, “Tailoring nanoporous materials by atomic layer deposition,” Chem. Soc. Rev.40(11), 5242–5253 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited