OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11906–11917

Saturation spectroscopy of iodine in hollow-core optical fiber

Anna Lurie, Philip S. Light, James Anstie, Thomas M. Stace, Paul C. Abbott, Fetah Benabid, and Andre N. Luiten  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 11906-11917 (2012)
http://dx.doi.org/10.1364/OE.20.011906


View Full Text Article

Enhanced HTML    Acrobat PDF (1754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present high-resolution spectroscopy of I2 vapor that is loaded and trapped within the core of a hollow-core photonic crystal fiber (HC-PCF). We compare the observed spectroscopic features to those observed in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ∼6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.

© 2012 OSA

OCIS Codes
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6460) Spectroscopy : Spectroscopy, saturation
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Spectroscopy

History
Original Manuscript: March 19, 2012
Revised Manuscript: April 18, 2012
Manuscript Accepted: April 18, 2012
Published: May 10, 2012

Citation
Anna Lurie, Philip S. Light, James Anstie, Thomas M. Stace, Paul C. Abbott, Fetah Benabid, and Andre N. Luiten, "Saturation spectroscopy of iodine in hollow-core optical fiber," Opt. Express 20, 11906-11917 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-11906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas.48, 544–549 (1999). [CrossRef]
  2. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett.87, 270801 (2001). [CrossRef]
  3. B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D81, 082002 (2010). [CrossRef]
  4. K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas.52, 284–287 (2003). [CrossRef]
  5. G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol.13, 918–922 (2002). [CrossRef]
  6. E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas.56, 673–676 (2007). [CrossRef]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science298, 399–402(2002). [CrossRef] [PubMed]
  8. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434, 488–491 (2005). [CrossRef] [PubMed]
  9. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett.35, 2287–2289 (2010). [CrossRef] [PubMed]
  10. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett.94, 093902 (2005). [CrossRef] [PubMed]
  11. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett.98, 213902 (2007). [CrossRef] [PubMed]
  12. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rubidium-filled HC-PCF PDMS coated hollow-core PCF,” Opt. Lett.32, 1323–1325 (2007). [CrossRef] [PubMed]
  13. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett.105, 173602 (2010). [CrossRef]
  14. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nichol-son, B. R. Washburn, F. Benabid, and Kristan L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17, 16017–16026 (2009). [CrossRef] [PubMed]
  15. C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A85, 012518 (2012). [CrossRef]
  16. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fibre frequency standard,” Opt. Lett.36, 4776–4778 (2011). [CrossRef] [PubMed]
  17. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31, 3574–3576 (2005). [CrossRef]
  18. W. Demtroder, Laser Spectroscopy, 3rd ed. (Springer, 2002).
  19. G. Khitrova, P. R. Berman, and M. Sargent, “Theory of pump-probe spectroscopy,” J. Opt. Soc. Am. B5, 160–170 (1988). [CrossRef]
  20. A. Schenzle and R. G. Brewer, “Optical coherent transients: Generalized two-level solutions,” Phys. Rev. A14, 1756–1765 (1976). [CrossRef]
  21. M. A. Banash and W. S. Warren, “State-to-state collisional dynamics by coherent laser pulse phase, shape and frequency modulation,” Laser Chem.6, 47–60 (1986). [CrossRef]
  22. T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys.86, 5370–5391 (1987). [CrossRef]
  23. E. T. Sleva and A. H. Zewail, “Phase and energy-changing collisions in Iodine gas: studies by optical multiple-pulse spectroscopy,” Chem. Phys. Lett.110, 582–587 (1984). [CrossRef]
  24. M. H. Ornstein and V. E. Derr, “Dye-laser scanning spectroscopy and fluorescence-quenching cross sections for the B3Π+o,u, state of iodine,” J. Opt. Soc. Am.6, 233–240 (1976). [CrossRef]
  25. S. V. Kireev and S. L. Shnyrev, “Rotational relaxation of the levels of the B State in 127I and 129I molecular Iodine isotopes excited by 633-nm radiation of a He–Ne Laser,” Laser Phys.9, 614–625 (1999).
  26. C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A.14, 236–263 (1976). [CrossRef]
  27. G. A. Capelle and H. P. Broida, “Lifetimes and quenching cross sections of I2 (B3ΠOu+),” J. Chem. Phys.58, 4212–4222 (1973). [CrossRef]
  28. F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun.212, 89–95 (2002). [CrossRef]
  29. G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2 X1∑(0g+) → B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transf.109, 1875–1885 (2008). [CrossRef]
  30. B. Hiller and R.K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids10, 1–11 (1990). [CrossRef]
  31. H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun.257, 76–83(2006) and references therein. [CrossRef]
  32. T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ.80, 914–917 (2003). [CrossRef]
  33. C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B59, 333–343 (1994). [CrossRef]
  34. D. G. Fletcher and J. C. McDaniel, “Collisional shift and broadening of Iodine spectral lines in Ar near 543nm,” J. Quant. Spectrosc. Radiat. Transfer54, 837–850, (1995). [CrossRef]
  35. M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys.119, 6546–6553 (2003). [CrossRef]
  36. J. C. D. Brand and J. Hayward, “Determination of cross-sections for collisional energy transfer in the ground and excited states of I2 by polarization spectroscopy,” Chem. Phys. Lett.68, 369–373 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited