OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11936–11943

Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure

Xinkun Li, Peng Jin, Qi An, Zuocai Wang, Xueqin Lv, Heng Wei, Jian Wu, Ju Wu, and Zhanguo Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 11936-11943 (2012)
http://dx.doi.org/10.1364/OE.20.011936


View Full Text Article

Enhanced HTML    Acrobat PDF (1738 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, a high-power and broadband quantum dot superluminescent diode (QD-SLD) is achieved by using a two-section structure. The QD-SLD device consists of a tapered titled ridge waveguide section supplying for high optical gain and a straight titled ridge waveguide section to tune optical feedback from the rear facet of the device. The key point of our design is to achieve the wavelength-selective optical feedback to the emission of the QDs’ ground state (GS) and 1st excited state (ES) by tuning the current densities injected in the straight titled section. With GS-dominant optical feedback under proper current-injection of the straight titled region, a high output power of 338 mW and a broad bandwidth of 65 nm is obtained simultaneously by the contribution associated to the QDs’ GS and 1st ES emission.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: March 23, 2012
Revised Manuscript: May 5, 2012
Manuscript Accepted: May 6, 2012
Published: May 10, 2012

Citation
Xinkun Li, Peng Jin, Qi An, Zuocai Wang, Xueqin Lv, Heng Wei, Jian Wu, Ju Wu, and Zhanguo Wang, "Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure," Opt. Express 20, 11936-11943 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-11936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 748–754 (2010). [CrossRef]
  2. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  3. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003). [CrossRef]
  4. N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol.22(2), 027002 (2011). [CrossRef]
  5. X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B19(1), 018104 (2010). [CrossRef]
  6. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express18(9), 8916–8922 (2010). [CrossRef] [PubMed]
  7. K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express18(18), 19438–19443 (2010). [CrossRef] [PubMed]
  8. X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett.36(6), 1020–1022 (2011). [CrossRef] [PubMed]
  9. Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron.31(12), 1235–1246 (1999). [CrossRef]
  10. N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett.41(25), 1400–1402 (2005). [CrossRef]
  11. Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett.43(19), 1045–1047 (2007). [CrossRef]
  12. M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron.43(8), 676–686 (2007). [CrossRef]
  13. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007). [CrossRef]
  14. Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010). [CrossRef] [PubMed]
  15. S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett.46(16), 1144–1146 (2010). [CrossRef]
  16. H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J.7(2), 251–257 (2007). [CrossRef]
  17. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010). [CrossRef]
  18. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett.46(4), 295–296 (2010). [CrossRef]
  19. Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron.39(11), 1409–1414 (2003). [CrossRef]
  20. H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron.38(4-6), 395–409 (2006). [CrossRef]
  21. M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett.74(11), 1561–1563 (1999). [CrossRef]
  22. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett.32(7), 793–795 (2007). [CrossRef] [PubMed]
  23. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999). [CrossRef]
  24. G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett.10(1), 57–59 (1998). [CrossRef]
  25. M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron.40(14-15), 1129–1134 (2008). [CrossRef]
  26. Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007). [CrossRef]
  27. P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron.15(3), 757–763 (2009). [CrossRef]
  28. Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett.47(21), 1191–1193 (2011). [CrossRef]
  29. X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett.6(1), 625–629 (2011). [CrossRef] [PubMed]
  30. A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B62(19), 12963–12977 (2000). [CrossRef]
  31. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron.28(6), 623–645 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited