OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11968–11975

FDTD simulations of localization and enhancements on fractal plasmonics nanostructures

Stéphanie Buil, Julien Laverdant, Bruno Berini, Pierre Maso, Jean-Pierre Hermier, and Xavier Quélin  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11968-11975 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas (“hot spots”) is demonstrated; the spectral and polarization dependences of the position of these “hot spots” are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

© 2012 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optics at Surfaces

Original Manuscript: April 11, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 5, 2012
Published: May 10, 2012

Stéphanie Buil, Julien Laverdant, Bruno Berini, Pierre Maso, Jean-Pierre Hermier, and Xavier Quélin, "FDTD simulations of localization and enhancements on fractal plasmonics nanostructures," Opt. Express 20, 11968-11975 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic Press, 1995).
  2. P. Sebbah, Waves and Imaging through Complex Media, (Kluwer, 2001).
  3. S. Grésillon, L. Aigouy, A. C. Boccara, J.-C. Rivoal, X. Quélin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999). [CrossRef]
  4. A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep.335(6), 275–371 (2000). [CrossRef]
  5. S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J.-C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B64(16), 165403 (2001). [CrossRef]
  6. S. I. Bozhevolnyi and V. Coello, “Statistics of local field intensity enhancements at nanostructured surfaces investigated with a near-field optical microscope,” Phys. Rev. B64(11), 115414 (2001). [CrossRef]
  7. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001). [CrossRef] [PubMed]
  8. S. Buil, J. Aubineau, J. Laverdant, and X. Quélin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture near-field optical microscope in collection mode,” J. Appl. Phys.100(6), 063530 (2006). [CrossRef]
  9. K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semi-continuous metal-dielectric films,” Phys. Rev. Lett.94(22), 226101 (2005). [CrossRef] [PubMed]
  10. V. M. Shalaev, Optical Properties of Nanostructured Random Media, (Springer, 2002).
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  12. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994). [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B58(17), 11441–11448 (1998). [CrossRef]
  14. R. C. Word, J. Fitzgerald, and R. Könenkamp, “Photoelectron emission control with polarized light in plasmonics metal random structure,” Appl. Phys. Lett.99(4), 041106 (2011). [CrossRef]
  15. C. Awada, G. Barbillon, F. Charra, L. Douillard, and J.-J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B85(4), 045438 (2012). [CrossRef]
  16. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105(18), 183901 (2010). [CrossRef] [PubMed]
  17. P. Sheng, “Theory of the dielectric function of granular composite media,” Phys. Rev. Lett.45(1), 60–63 (1980). [CrossRef]
  18. V. M. Shalaev and A. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B57(20), 13265–13288 (1998). [CrossRef]
  19. V. M. Shalaev, Nonlinear Optics of Random Media, (Springer, 2000).
  20. C. H. Chan, S. H. Lou, L. Tsang, and J. A. Kong, “Electromagnetic scattering of waves by random rough surface: a finite-difference time-domain approach,” Microw. Opt. Technol. Lett.4(9), 355–359 (1991). [CrossRef]
  21. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B100(1), 159–168 (2010). [CrossRef]
  22. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics5(1), 051513 (2011). [CrossRef]
  23. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B Condens. Matter53(5), 2425–2436 (1996). [CrossRef] [PubMed]
  24. J. Aubineau, “Modélisation de couches minces métalliques fractales et calcul d’exaltations de champs électromagnétiques, » PhD thesis, Université de Versailles Saint-Quentin, 2005.
  25. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett.72(15), 2486–2489 (1994). [CrossRef] [PubMed]
  26. J. A. Sánchez-Gil and J. V. Garcia-Ramos, “Calculations of the direct electromagnetic enhancement in surface enhanced Raman scattering on random self-affine fractal metal surfaces,” J. Chem. Phys.108(1), 317–325 (1998). [CrossRef]
  27. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007). [CrossRef] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  29. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2005).
  31. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Plasmon localization and local field distribution in metal-dielectric films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(5), 056611 (2003). [CrossRef] [PubMed]
  32. H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature469(7330), 385–388 (2011). [CrossRef] [PubMed]
  33. H. Xu and M. Käll, “Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates,” ChemPhysChem4(9), 1001–1005 (2003). [CrossRef] [PubMed]
  34. H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett.8(8), 2497–2502 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited