OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11986–11993

Phase resolved near-field mode imaging for the design of frequency-selective surfaces

Edward C. Kinzel, James C. Ginn, Robert L. Olmon, David J. Shelton, Brian A. Lail, Igal Brener, Michael B. Sinclair, Markus B. Raschke, and Glenn D. Boreman  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11986-11993 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Frequency-selective surfaces (FSS) are a class of metasurfaces with engineered reflectance, absorbance, and transmittance behavior. We study an array of metallic crossed dipole FSS elements in the infrared using interferometric scattering-type scanning near-field optical microscopy (s-SNOM). We resolve the dependence of the near-field phase on the dimensions of the elements and compare with numerical models. The combined phase and amplitude information of the underlying near-field mode distribution compared to conventional far-field absorption spectroscopy greatly improves the targeted design of frequency-selective surfaces.

© 2012 OSA

OCIS Codes
(260.3060) Physical optics : Infrared
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: March 7, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: April 26, 2012
Published: May 10, 2012

Edward C. Kinzel, James C. Ginn, Robert L. Olmon, David J. Shelton, Brian A. Lail, Igal Brener, Michael B. Sinclair, Markus B. Raschke, and Glenn D. Boreman, "Phase resolved near-field mode imaging for the design of frequency-selective surfaces," Opt. Express 20, 11986-11993 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley & Sons, 2000).
  2. C. M. Rhoads, E. K. Damon, and B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt.21(15), 2814–2816 (1982). [CrossRef] [PubMed]
  3. D. J. Shelton, J. W. Cleary, J. C. Ginn, S. L. Wadsworth, R. E. Peale, D. K. Kotter, and G. D. Boreman, “Gangbuster frequency selective surface metamaterials in terahertz band,” Electron. Lett.44(22), 1288–1289 (2008). [CrossRef]
  4. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2010). [PubMed]
  5. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett.31(18), 2687–2689 (2006). [CrossRef] [PubMed]
  6. I. Puscasu, W. Schaich, and G. D. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol.43(2), 101–107 (2002). [CrossRef]
  7. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010). [CrossRef] [PubMed]
  8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  9. J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase characterization of reflectarray elements at infrared,” IEEE Trans. Antenn. Propag.55(11), 2989–2993 (2007). [CrossRef]
  10. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33(8), 779–781 (2008). [CrossRef] [PubMed]
  11. J. A. Gómez-Pedrero, J. Ginn, J. Alda, and G. Boreman, “Modulation transfer function for infrared reflectarrays,” Appl. Opt.50(27), 5344–5350 (2011). [CrossRef] [PubMed]
  12. X. Zhang, M. Davanço, K. Maller, T. W. Jarvis, C. Wu, C. Fietz, D. Korobkin, X. Li, G. Shvets, and S. R. Forrest, “Interferometric characterization of a sub-wavelength near-infrared negative index metamaterial,” Opt. Express18(17), 17788–17795 (2010). [CrossRef] [PubMed]
  13. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett.9(7), 2553–2558 (2009). [CrossRef] [PubMed]
  14. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010). [CrossRef] [PubMed]
  15. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009). [CrossRef]
  16. J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett.11(7), 2819–2824 (2011). [CrossRef] [PubMed]
  17. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett.33(8), 848–850 (2008). [CrossRef] [PubMed]
  18. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011). [CrossRef] [PubMed]
  19. A. García-Extarri, I. Romero, F. Javier García de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling, regimes,” Phys. Rev. B79(12), 125439 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1207 KB)     
» Media 2: AVI (809 KB)     
» Media 3: AVI (1216 KB)     
» Media 4: AVI (827 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited