OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12004–12013

Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing

Thomas Gottschall, Martin Baumgartl, Aude Sagnier, Jan Rothhardt, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12004-12013 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2020 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a fiber-based laser source for multiplex coherent anti-Stokes Raman scattering (CARS) microscopy. This source is very compact and potentially alignment-free. The corresponding pump and Stokes pulses for the CARS process are generated by degenerate four-wave mixing (FWM) in photonic-crystal fibers. In addition, an ytterbium-doped fiber laser emitting spectrally narrow 100 ps pulses at 1035 nm wavelength serves as pump for the FWM frequency conversion. The FWM process delivers narrow-band pulses at 648 nm and drives a continuum-like spectrum ranging from 700 to 820 nm. With the presented source vibrational resonances with energies between 1200 cm−1 and 3200 cm−1 can be accessed with a resolution of 10 cm−1. Additionally, the temporal characteristics of the FWM output have been investigated by a cross-correlation setup, revealing the suitability of the emitted pulses for CARS microscopy. This work marks a significant step towards a simple and powerful all-fiber, maintenance-free multiplex-CARS source for real-world applications outside a laboratory environment.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.7300) Lasers and laser optics : Visible lasers
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: February 22, 2012
Revised Manuscript: April 3, 2012
Manuscript Accepted: April 8, 2012
Published: May 11, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Thomas Gottschall, Martin Baumgartl, Aude Sagnier, Jan Rothhardt, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann, "Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing," Opt. Express 20, 12004-12013 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  2. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011). [CrossRef] [PubMed]
  3. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy,” J. Phys. Chem. B106(14), 3715–3723 (2002). [CrossRef]
  4. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  5. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11(10), 662–664 (1986). [CrossRef] [PubMed]
  6. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11(10), 659–661 (1986). [CrossRef] [PubMed]
  7. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).
  8. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “ Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004). [CrossRef] [PubMed]
  9. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34(22), 3499–3501 (2009). [CrossRef] [PubMed]
  10. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express18(15), 16193–16205 (2010). [CrossRef] [PubMed]
  11. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett.34(13), 2051–2053 (2009). [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett.34(21), 3262–3264 (2009). [CrossRef] [PubMed]
  14. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4493 (2012). [CrossRef] [PubMed]
  15. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett.26(17), 1356–1358 (2001). [CrossRef] [PubMed]
  16. J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6,” Opt. Express17(4), 2508–2517 (2009). [CrossRef] [PubMed]
  17. B. Ortaς, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express15(23), 15595–15602 (2007). [CrossRef] [PubMed]
  18. J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt.5(5), 534–538 (2003). [CrossRef]
  19. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express14(8), 3622–3630 (2006). [CrossRef] [PubMed]
  20. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009). [CrossRef] [PubMed]
  21. P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express19(25), 25337–25345 (2011). [CrossRef] [PubMed]
  22. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett.35(17), 2885–2887 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited