OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12040–12047

On the modeling of spectral map of glass-metal nanocomposite optical nonlinearity

A.A. Lipovskii, O.V. Shustova, V.V. Zhurikhina, and Yu. Svirko  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12040-12047 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral map of the nonlinear absorption coefficient of glass-copper nanocomposite in the pump-probe scheme constructed with the use of a simple anharmonic oscillator model reproduced well the spectral map obtained in the experiment. It is shown that spectral features in nonlinear response of glass-metal nanocomposites (GMN) can be engineered by varying the size of nanoparticles. The pronounced dependence of the magnitude of the third-order nonlinearity on the particles size explains the diversity of experimental data related to nonlinear optical response of GMNs in different experiments. Performed modeling proves that silver GMN demonstrate much sharper spectral dependence than copper ones due to strong frequency dependence of local field enhancement factor for silver nanoparticles.

© 2012 OSA

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: March 19, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 12, 2012
Published: May 11, 2012

A.A. Lipovskii, O.V. Shustova, V.V. Zhurikhina, and Yu. Svirko, "On the modeling of spectral map of glass-metal nanocomposite optical nonlinearity," Opt. Express 20, 12040-12047 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  4. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. Ch. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  6. D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011). [CrossRef]
  7. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface-plasmon polaritons on metal-dielectric nanocomposite films,” Opt. Lett.34(22), 3535–3537 (2009). [CrossRef] [PubMed]
  8. A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett.89(3), 031118–031120 (2006). [CrossRef]
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  10. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  11. S. A. Maier, “Plasmonics-towards subwavelength optical devices,” Current Nanosci.1(1), 17–22 (2005). [CrossRef]
  12. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)
  13. L. Pálfalvi, B. C. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “A general Z-scan theory,” Appl. Phys. B97(3), 679–685 (2009). [CrossRef]
  14. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B11(6), 1009–1017 (1994). [CrossRef]
  15. J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys.251(1-3), 181–203 (2000). [CrossRef]
  16. M. Halonen, A. A. Lipovskii, and Y. P. Svirko, “Femtosecond absorption dynamics in glass-metal nanocomposites,” Opt. Express15(11), 6840–6845 (2007). [CrossRef] [PubMed]
  17. J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London Ser. A203(359-371), 385–420 (1904). [CrossRef]
  18. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt.20(1), 26–30 (1981). [CrossRef] [PubMed]
  19. H. Ma, R. Xiao, and P. Sheng, “Third-order optical nonlinearity enhancement through composite microstructures,” J. Opt. Soc. Am. B15(3), 1022–1029 (1998). [CrossRef]
  20. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitatskonstanten und leitfahigkeiten der mischk.orper aus isotropen sub-stanzen,” Ann. Phys.416(7), 636–664 (1935). [CrossRef]
  21. M. Halonen, A. Lipovskii, V. Zhurikhina, D. Lyashenko, and Yu. Svirko, “Spectral mapping of the third-order optical nonlinearity of glass-metal nanocomposites,” Opt. Express17(19), 17170–17178 (2009). [CrossRef] [PubMed]
  22. M. Halonen, A. A. Lipovskii, and Yu. P. Svirko, “Femtosecond transmission control in glass-metal nanocomposites,” in International Conference on Coherent and Nonlinear Optics (Minsk, Belarus, 2007)
  23. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon Press, 1976).
  24. H. Wormeester, E. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi205(4), 756–763 (2008) (a). [CrossRef]
  25. R. Boyd, Introduction to Nonlinear Optics (Academic Press, Boston, Mass., 1992).
  26. M. G. Papadopoulos, et al., eds., Non-Linear Optical Properties of Matter (Springer, 2006).
  27. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).
  28. N. W. Ashcroft and D. N. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1987).
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  30. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys.4(7), 999–1014 (1974). [CrossRef]
  31. Y. Takeda, H. Momida, M. Ohnuma, T. Ohno, and N. Kishimoto, “Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials,” Opt. Express16(10), 7471–7480 (2008). [CrossRef] [PubMed]
  32. Y. Takeda, O. A. Plaksin, and N. Kishimoto, “Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass,” Opt. Express15(10), 6010–6018 (2007). [CrossRef] [PubMed]
  33. N. Del Fatti, F. Vallee, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.251(1-3), 215–226 (2000). [CrossRef]
  34. B. Karthikeyan, J. Thomas, and R. Philip, “Optical nonlinearity in glass-embedded silver nanoclusters under ultrafast laser excitation,” Chem. Phys. Lett.414(4-6), 346–350 (2005). [CrossRef]
  35. P. P. Kiran, G. De, and D. N. Rao, “Nonlinear optical properties of copper and silver nanoclusters in SiO2 sol-gel films,” IEEE Proc. – Circuits Dev. and Syst.150(6), 559–562 (2003). [CrossRef]
  36. X. C. Yang, Z. H. Li, W. J. Li, J. X. Xu, Z. W. Dong, and S. X. Qian, “Optical nonlinearity and ultrafast dynamics of ion exchanged silver nanoparticles embedded in soda-lime silicate glass,” Chin. Sci. Bull.53(5), 695–699 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited