OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12111–12118

Photonic crystal self-collimation sensor

Yufei Wang, Hailing Wang, Qikun Xue, and Wanhua Zheng  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12111-12118 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1704 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel refractive index sensor based on the two dimensional photonic crystal folded Michelson interferometer employing the self-collimation effect is proposed and its performances are theoretically investigated. Two sensing areas are included in the sensor. Simulation results indicate the branch area is suitable for the small index variety range and fine detection, whereas the reflector area prone to the large index change range and coarse detection. Because of no defect waveguides and no crosstalk of signal, the sensor is desirable to perform monolithic integrated, low-cost, label-free real-time parallel sensing. In addition, a flexible design of self-collimation sensors array is demonstrated.

© 2012 OSA

OCIS Codes
(120.1680) Instrumentation, measurement, and metrology : Collimation
(130.6010) Integrated optics : Sensors
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: April 3, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 28, 2012
Published: May 14, 2012

Yufei Wang, Hailing Wang, Qikun Xue, and Wanhua Zheng, "Photonic crystal self-collimation sensor," Opt. Express 20, 12111-12118 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992). [CrossRef]
  2. S. J. Spammer, P. L. Swart, and A. Booysen, “Interferometric distributed optical-fiber sensor,” Appl. Opt.35(22), 4522–4525 (1996). [CrossRef] [PubMed]
  3. B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem.39(1-3), 277–282 (1997). [CrossRef]
  4. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999). [CrossRef]
  5. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003). [CrossRef]
  6. S. Chakravarty, J. Topol’ančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett.30(19), 2578–2580 (2005). [CrossRef] [PubMed]
  7. J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett.82(8), 1143–1145 (2003). [CrossRef]
  8. S. Xiao and N. A. Mortensen, “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A, Pure Appl. Opt.9(9), S463–S467 (2007). [CrossRef]
  9. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010). [CrossRef] [PubMed]
  10. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express16(9), 6515–6527 (2008). [CrossRef] [PubMed]
  11. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express19(18), 17683–17690 (2011). [CrossRef] [PubMed]
  12. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  13. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express19(21), 20023–20034 (2011). [CrossRef] [PubMed]
  14. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999). [CrossRef]
  15. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys.40(9), 2635–2651 (2007). [CrossRef]
  16. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett.83(16), 3251–3253 (2003). [CrossRef]
  17. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett.90(23), 231114 (2007). [CrossRef]
  18. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett.32(5), 530–532 (2007). [CrossRef] [PubMed]
  19. X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express17(22), 19808–19813 (2009). [CrossRef] [PubMed]
  20. T. T. Kim, S. G. Lee, H. Y. Park, J. E. Kim, and C. S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express18(6), 5384–5389 (2010). [CrossRef] [PubMed]
  21. H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal,” Opt. Express18(7), 6437–6446 (2010). [CrossRef] [PubMed]
  22. T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystal for optical interconnect,” IEEE J. Sel. Areas Commun.23(7), 1341–1347 (2005). [CrossRef]
  23. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express15(22), 14376–14381 (2007). [CrossRef] [PubMed]
  24. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics5(2), 161–167 (2010). [CrossRef]
  25. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  26. Y. Wang, W. Zhou, A. Liu, W. Chen, F. Fu, X. Yan, B. Jiang, Q. Xue, and W. Zheng, “Optical properties of the crescent and coherent applications,” Opt. Express19(9), 8303–8311 (2011). [CrossRef] [PubMed]
  27. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  28. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express18(26), 27930–27937 (2010). [CrossRef] [PubMed]
  29. R. Martin, A. Sharkawy, and E. Kelmelis, “Photonic crystal reduce the size of optical sensors,” SPIE Newsroom, 10.1117/2.1200610.0413 (2006). [CrossRef]
  30. Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE6781, 678118 (2007). [CrossRef]
  31. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater.5(2), 93–96 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited