OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12119–12126

Reconfigurable plasmonic devices using liquid metals

Jinqi Wang, Shuchang Liu, and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12119-12126 (2012)
http://dx.doi.org/10.1364/OE.20.012119


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate an approach to create reconfigurable plasmonic devices in which the geometry of the device can be changed dramatically. The specific embodiment we present utilizes eutectic gallium indium (EGaIn), a metal that is liquid at room temperature, which is injected into or withdrawn from channels encapsulated by a polydimethylsiloxane (PDMS) bullseye mold fabricated on a gold coated substrate. Using terahertz (THz) time-domain spectroscopy, we measure the enhanced transmission properties of a single subwavelength aperture surrounded by differing numbers of concentric annular EGaIn rings. The results obtained from different device geometries, with either a single or multiple rings, are performed using a single device, demonstrating true reconfigurability. We explain the properties of the observed temporal waveforms using a simple time-domain model. This represents, we believe, a first step in developing more complex reconfigurable plasmonic devices.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 9, 2012
Revised Manuscript: May 1, 2012
Manuscript Accepted: May 3, 2012
Published: May 14, 2012

Citation
Jinqi Wang, Shuchang Liu, and Ajay Nahata, "Reconfigurable plasmonic devices using liquid metals," Opt. Express 20, 12119-12126 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  3. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  4. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  7. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007). [CrossRef] [PubMed]
  8. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8(5), 1506–1510 (2008). [CrossRef] [PubMed]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  10. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97(9), 091101 (2010). [CrossRef]
  11. K. F. McDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  12. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011). [CrossRef] [PubMed]
  13. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010). [CrossRef]
  14. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics5(6), 360–363 (2011). [CrossRef]
  15. J. Wang, S. Liu, Z. V. Vardeny, and A. Nahata, “Liquid metal-based plasmonics,” Opt. Express20(3), 2346–2353 (2012). [CrossRef] [PubMed]
  16. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001). [CrossRef] [PubMed]
  17. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  18. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express13(9), 3535–3542 (2005). [CrossRef] [PubMed]
  19. A. Agrawal and A. Nahata, “Time-domain radiative properties of a single subwavelength aperture surrounded by an exit side surface corrugation,” Opt. Express14(5), 1973–1981 (2006). [CrossRef] [PubMed]
  20. H. W. Fox, P. W. Taylor, and W. A. Zisman, “Polyorganosiloxanes… Surface active properties,” Ind. Eng. Chem.39(11), 1401–1409 (1947). [CrossRef]
  21. O. Mitrofanov, M. Lee, J. P. W. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5-THz pulses,” IEEE J. Sel. Top. Quantum Electron.7(4), 600–607 (2001). [CrossRef]
  22. J. A. Sánchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett.73(24), 3509–3511 (1998). [CrossRef]
  23. A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express15(9), 5616–5624 (2007). [CrossRef] [PubMed]
  24. N.-T. Nguyen and S. T. Werely, Fundamentals and Applications of Microfluidics (Artech House, Norwood MA, 2006).
  25. W. Irshad and D. Peroulis, “A silicon-based galinstan magnetohydrodynamic pump” in Proceedings of the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), (2009), pp. 127–129.
  26. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater.18(7), 1097–1104 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited