OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12133–12146

Optical properties of metal-multi-insulator-metal plasmonic waveguides

Xiang-Tian Kong, Wei-Guo Yan, Zu-Bin Li, and Jian-Guo Tian  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12133-12146 (2012)
http://dx.doi.org/10.1364/OE.20.012133


View Full Text Article

Enhanced HTML    Acrobat PDF (1190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study the plasmonic modes in metal-multi-insulator-metal (MMIM) waveguides. Two types of symmetric MMIM structures consisting of three insulators are investigated thoroughly. The effective refractive index, energy confinement, propagation length, and figure of merit are given in terms of geometric parameters. Due to the step index modulation, these properties of MMIM structures differ from the metal-insulator-metal (MIM) structure. Compared with the corresponding MIM structures, MMIM structures can possess either better energy confinement or larger propagation length, which depends on the geometric parameters and the index distribution. Propagation length of up to 103 µm and a figure of merit of up to 104 are observed for MMIM structure with core thickness of several hundred nanometers.

© 2012 OSA

OCIS Codes
(230.4170) Optical devices : Multilayers
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 21, 2012
Revised Manuscript: April 15, 2012
Manuscript Accepted: May 7, 2012
Published: May 14, 2012

Citation
Xiang-Tian Kong, Wei-Guo Yan, Zu-Bin Li, and Jian-Guo Tian, "Optical properties of metal-multi-insulator-metal plasmonic waveguides," Opt. Express 20, 12133-12146 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  3. J.-C. Weeber, M. U. Gonzalez, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett.87(22), 221101 (2005). [CrossRef]
  4. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B78(4), 045425 (2008). [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  6. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  7. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008). [CrossRef] [PubMed]
  8. W. Mu, D. B. Buchholz, M. Sukharev, J. I. Jang, R. P. Chang, and J. B. Ketterson, “One-dimensional long-range plasmonic-photonic structures,” Opt. Lett.35(4), 550–552 (2010). [CrossRef] [PubMed]
  9. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009). [CrossRef]
  10. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96(9), 097401 (2006). [CrossRef] [PubMed]
  11. X. Zhu, J. Zhang, J. Xu, and D. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011). [CrossRef] [PubMed]
  12. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007). [CrossRef]
  13. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007). [CrossRef]
  14. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic fabry-pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009). [CrossRef] [PubMed]
  15. D. F. P. Pile and D. K. Gramotnev, “Nanoscale fabry-prot interferometer using channel plasmon-polaritons in triangular metallic grooves,” Appl. Phys. Lett.86(16), 161101 (2005). [CrossRef]
  16. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  17. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  18. Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B83(16), 165412 (2011). [CrossRef]
  19. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981). [CrossRef]
  20. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  21. A. V. Krasavin and A. V. Zayats, “Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides,” Opt. Lett.35(13), 2118–2120 (2010). [CrossRef] [PubMed]
  22. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005). [CrossRef]
  23. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  24. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  25. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett.95(1), 013504 (2009). [CrossRef]
  26. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991). [CrossRef] [PubMed]
  27. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969). [CrossRef]
  28. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004). [CrossRef] [PubMed]
  29. N.-N. Feng and L. Dal Negro, “Plasmon mode transformation in modulated-index metal-dielectric slot waveguides,” Opt. Lett.32(21), 3086–3088 (2007). [CrossRef] [PubMed]
  30. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  31. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun.258(2), 295–299 (2006). [CrossRef]
  32. Y.-J. Chang, “Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating,” Opt. Express18(12), 13258–13270 (2010). [CrossRef] [PubMed]
  33. Y.-J. Chang and G.-Y. Lo, “A narrow band metal-multi-insulator-metal waveguide plasmonic Bragg grating,” IEEE Photon. Technol. Lett.22(9), 634–636 (2010). [CrossRef]
  34. M.-S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011). [CrossRef] [PubMed]
  35. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011). [CrossRef]
  36. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  37. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  38. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  39. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  40. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  41. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited