OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12155–12165

Mid-infrared designer metals

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12155-12165 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the potential of highly-doped semiconductor epilayers as building blocks for mid-infrared plasmonic structures. InAs epilayers are grown by molecular beam epitaxy and characterized by Hall measurements and optical techniques. We show that the plasma frequency of our material can be controlled across a broad range of mid-infrared frequencies. Subwavelength disks are fabricated out of our material, and localized plasmonic resonances are observed from these structures. Experimental results are compared to both numerical simulations and a simple quasistatic dipole model of our disks with good agreement.

© 2012 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: March 26, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 19, 2012
Published: May 14, 2012

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, "Mid-infrared designer metals," Opt. Express 20, 12155-12165 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  5. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006). [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  7. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  9. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003). [CrossRef]
  10. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  11. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  14. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett.10(7), 2511–2518 (2010). [CrossRef] [PubMed]
  15. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011). [CrossRef] [PubMed]
  16. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett.98(24), 241105 (2011). [CrossRef]
  17. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  18. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett.90(19), 191102 (2007). [CrossRef]
  19. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96(20), 201112 (2010). [CrossRef]
  20. isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express19(10), 9269–9281 (2011). [CrossRef]
  21. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011). [CrossRef]
  22. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett.76(16), 2164–2166 (2000). [CrossRef]
  23. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237(4-6), 379–388 (2004). [CrossRef]
  24. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011). [CrossRef]
  25. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011). [CrossRef]
  26. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011). [CrossRef] [PubMed]
  27. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  28. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express19(15), 14594–14603 (2011). [CrossRef] [PubMed]
  29. E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys.29(Part 2, No. 5), L698–L701 (1990). [CrossRef]
  30. S. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys. Condens. Matter14(34), R881–R903 (2002). [CrossRef]
  31. Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol.8(1), 101–111 (1993). [CrossRef]
  32. N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond.12, 1139–1142 (1993).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  34. T. S. Moss, “The interpretation of the properties of indium arsenide,” Proc. Phys. Soc. B67(10), 775–782 (1954). [CrossRef]
  35. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev.93(3), 632–633 (1954). [CrossRef]
  36. T. S. Moss, Optical Properties of Semiconductors (Butterworth Academic Press, 1961).
  37. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  38. G. Mie, “Contributions to the optics of turbid media, especially colloidal metal solutions,” Ann. Phys.330(3), 377–380 (1908). [CrossRef]
  39. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods,” J. Phys. Chem. B103(40), 8410–8426 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited