OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12171–12176

Nanolasers grown on silicon-based MOSFETs

Fanglu Lu, Thai-Truong D. Tran, Wai Son Ko, Kar Wei Ng, Roger Chen, and Connie Chang-Hasnain  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12171-12176 (2012)
http://dx.doi.org/10.1364/OE.20.012171


View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report novel indium gallium arsenide (InGaAs) nanopillar lasers that are monolithically grown on (100)-silicon-based functional metal-oxide-semiconductor field effect transistors (MOSFETs) at low temperature (410 °C). The MOSFETs maintain their performance after the nanopillar growth, providing a direct demonstration of complementary metal-oxide-semiconudctor (CMOS) compatibility. Room-temperature operation of optically pumped lasers is also achieved. To our knowledge, this is the first time that monolithically integrated lasers and transistors have been shown to work on the same silicon chip, serving as a proof-of-concept that such integration can be extended to more complicated CMOS integrated circuits.

© 2012 OSA

OCIS Codes
(160.3380) Materials : Laser materials
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optoelectronics

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 6, 2012
Manuscript Accepted: May 6, 2012
Published: May 14, 2012

Virtual Issues
June 13, 2012 Spotlight on Optics

Citation
Fanglu Lu, Thai-Truong D. Tran, Wai Son Ko, Kar Wei Ng, Roger Chen, and Connie Chang-Hasnain, "Nanolasers grown on silicon-based MOSFETs," Opt. Express 20, 12171-12176 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  2. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433(7023), 292–294 (2005). [CrossRef] [PubMed]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  4. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004). [CrossRef] [PubMed]
  5. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010). [CrossRef] [PubMed]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  7. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  8. Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett.62(10), 1038–1040 (1993). [CrossRef]
  9. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011). [CrossRef]
  10. S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys.108(11), 114316 (2010). [CrossRef]
  11. J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett.11(11), 4831–4838 (2011). [CrossRef] [PubMed]
  12. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett.93(2), 023116 (2008). [CrossRef]
  13. M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express17(10), 7831–7836 (2009). [CrossRef] [PubMed]
  14. L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011). [CrossRef] [PubMed]
  15. H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev.52(9), 2081–2086 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited