OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12191–12197

Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate

Mamoru Endo, Akira Ozawa, and Yohei Kobayashi  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12191-12197 (2012)
http://dx.doi.org/10.1364/OE.20.012191


View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a laser-diode pumped, 4.6-GHz repetition-rate, Yb:KYW Kerr-lens mode-locked femtosecond oscillator. A bow-tie ring cavity generates an output power of 14.6 mW with a spectrum width of 11 nm at 1046 nm. To the best of our knowledge, this is the highest-repetition frequency in the laser-diode pumped femtosecond Kerr-lens mode-locked laser.

© 2012 OSA

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 2, 2012
Revised Manuscript: April 17, 2012
Manuscript Accepted: April 26, 2012
Published: May 14, 2012

Citation
Mamoru Endo, Akira Ozawa, and Yohei Kobayashi, "Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate," Opt. Express 20, 12191-12197 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001). [CrossRef] [PubMed]
  2. Y. V. Baklanov and V. P. Chebotayev, “Narrow Resonances of Two-Photon Absorption of Super-Narrow Pulses in a Gas,” Appl. Phys. (Berl.)12 (1), 97–99 (1977). [CrossRef]
  3. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30(13), 1734–1736 (2005). [CrossRef] [PubMed]
  4. D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009). [CrossRef]
  5. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16, 2387–2397 (2007).
  6. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010). [CrossRef]
  7. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005). [CrossRef] [PubMed]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  9. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73(6), 063407 (2006). [CrossRef]
  10. E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011). [CrossRef]
  11. S. Lopez, “Astronomy. The universe measured with a comb,” Science321(5894), 1301–1302 (2008). [CrossRef] [PubMed]
  12. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  13. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010). [CrossRef]
  15. D. E. Spence, J. M. Dudley, K. Lamb, W. E. Sleat, and W. Sibbett, “Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser,” Opt. Lett.19(7), 481–483 (1994). [CrossRef] [PubMed]
  16. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  17. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express15(20), 13155–13166 (2007). [CrossRef] [PubMed]
  18. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011). [CrossRef] [PubMed]
  19. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002). [CrossRef]
  20. G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011). [CrossRef]
  21. K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000). [CrossRef]
  22. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010). [CrossRef] [PubMed]
  23. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012). [CrossRef] [PubMed]
  24. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express17(7), 5630–5635 (2009). [CrossRef] [PubMed]
  25. Y. Kobayashi, Y. Nomura, and S. Watanabe, “1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system,” CMN-3, CLEO 2010 (2010).
  26. S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited