OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12198–12204

Interaction between graphene and metamaterials: split rings vs. wire pairs

Yanhong Zou, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12198-12204 (2012)
http://dx.doi.org/10.1364/OE.20.012198


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have recently shown that graphene is unsuitable to replace metals in the current-carrying elements of metamaterials. At the other hand, experiments have demonstrated that a layer of graphene can modify the optical response of a metal-based metamaterial. Here we study this electromagnetic interaction between metamaterials and graphene. We show that the weak optical response of graphene can be modified dramatically by coupling to the strong resonant fields in metallic structures. A crucial element determining the interaction strength is the orientation of the resonant fields. If the resonant electric field is predominantly parallel to the graphene sheet (e.g., in a complementary split-ring metamaterial), the metamaterial’s resonance can be strongly damped. If the resonant field is predominantly perpendicular to the graphene sheet (e.g., in a wire-pair metamaterial), no significant interaction exists.

© 2012 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 27, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 4, 2012
Published: May 14, 2012

Citation
Yanhong Zou, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis, "Interaction between graphene and metamaterials: split rings vs. wire pairs," Opt. Express 20, 12198-12204 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef] [PubMed]
  2. A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007). [CrossRef]
  3. C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008). [CrossRef] [PubMed]
  4. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006). [CrossRef] [PubMed]
  5. S. De, J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films,” ACS Nano 4, 2713–2720 (2010). [CrossRef] [PubMed]
  6. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010). [CrossRef]
  7. F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009). [CrossRef]
  8. M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  9. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  10. F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011). [CrossRef] [PubMed]
  11. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012). [CrossRef]
  12. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef] [PubMed]
  13. N. M. Litchinitser, V. M. Shalaev, “Photonic metamaterials,” Laser. Phys. Lett. 5, 411–420 (2008). [CrossRef]
  14. C. M. Soukoulis, M. Wegener, “Optical metamaterials—more bulky and less lossy,” Science 330, 1633–1634 (2010). [CrossRef] [PubMed]
  15. C. M. Soukoulis, M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).
  16. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  17. T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). [CrossRef]
  18. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  19. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  20. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009). [CrossRef]
  21. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  22. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  23. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  24. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Ant. Wireless Prop. Lett. 1, 10 (2002). [CrossRef]
  25. P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008). [CrossRef]
  26. A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007). [CrossRef]
  27. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  28. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  29. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008). [CrossRef]
  30. M. Dalarsson, P. Tassin, “Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material,” Opt. Express 17, 6747–6752 (2009). [CrossRef] [PubMed]
  31. N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010). [CrossRef] [PubMed]
  32. F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010). [CrossRef] [PubMed]
  33. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited