OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12205–12211

Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses

Bo Zhou, Lili Tao, Yuen H. Tsang, Wei Jin, and Edwin Yue-Bun Pun  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12205-12211 (2012)
http://dx.doi.org/10.1364/OE.20.012205


View Full Text Article

Enhanced HTML    Acrobat PDF (1185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of superbroadband emission extending from 1.30 to 1.68 μm in praseodymium(Pr3+)-erbium(Er3+) codoped fluorotellurite glasses under 488 nm excitation. This superbroad near-infrared emission is contributed by the Pr3+: 1D21G4 and Er3+: 4I13/24I15/2 transitions which lead to emissions located at 1.48 and 1.53 μm, respectively. The quenching of the Pr3+ emission resulted from the cross relaxation [1D2, 3H4]→[1G4, 3F3,4] was effectively compensated by the codoping of Er3+. The results suggest that, other than the heavy-metal and transition-metal elements of active bismuth (Bi), nickel (Ni), chromium (Cr), etc., Pr3+-Er3+ codoped system is a promising alternative for the broadband near-infrared emission covering the expanded low-loss window.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Materials

History
Original Manuscript: December 9, 2011
Revised Manuscript: March 23, 2012
Manuscript Accepted: March 29, 2012
Published: May 14, 2012

Citation
Bo Zhou, Lili Tao, Yuen H. Tsang, Wei Jin, and Edwin Yue-Bun Pun, "Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses," Opt. Express 20, 12205-12211 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature404(6775), 262–264 (2000). [CrossRef] [PubMed]
  2. S. Kasap, “Optoelectronics” in The Optics Encyclopedia edited by T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber (Wiley-VCH, 2004), vol. 4, pp. 2237–2284.
  3. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1–4), 437–439 (1999). [CrossRef]
  4. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  5. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  6. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett.92(4), 041908 (2008). [CrossRef]
  7. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett.33(18), 2131–2133 (2008). [CrossRef] [PubMed]
  8. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett.86(13), 131903 (2005). [CrossRef]
  9. Y. C. Huang, Y. K. Lu, J. C. Chen, Y. C. Hsu, Y. M. Huang, S. L. Huang, and W. H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Express14(19), 8492–8497 (2006). [CrossRef] [PubMed]
  10. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11–13), 2241–2245 (2011). [CrossRef]
  11. See, for example, Rare-Earth-Doped Fiber Lasers and Amplifiers (Second Edition, Revised and Expanded) edited by M. J. F. Digonnet (Marcel Dekker, 2009), and references therein.
  12. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express18(18), 18805–18810 (2010). [CrossRef] [PubMed]
  13. B. Zhou, H. Lin, B. J. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express19(7), 6514–6523 (2011). [CrossRef] [PubMed]
  14. D. R. Simons, A. J. Faber, and H. de Waal, “Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 µm,” Opt. Lett.20(5), 468–470 (1995). [CrossRef] [PubMed]
  15. Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett.78(19), 1249–1251 (2001). [CrossRef]
  16. B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett.36(15), 2958–2960 (2011). [CrossRef] [PubMed]
  17. J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett.23(11), 736–738 (2011). [CrossRef]
  18. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  19. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  20. R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp.380(1–2), 167–172 (2004). [CrossRef]
  21. L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys.93(2–3), 455–460 (2005). [CrossRef]
  22. V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids325(1–3), 85–102 (2003). [CrossRef]
  23. S. Dai, J. Zhang, C. Yu, G. Zhou, G. Wang, and L. Hu, “Effect of hydroxyl groups on nonradiative decay of Er3+: 4I13/2→4I15/2 transition in zinc tellurite glasses,” Mater. Lett.59(18), 2333–2336 (2005). [CrossRef]
  24. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B62(2), 856–864 (2000). [CrossRef]
  25. S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers,” J. Appl. Phys.91(11), 9072–9077 (2002). [CrossRef]
  26. Y. Ohishi, T. Kanamori, J. Temmyo, M. Wada, M. Yamada, M. Shimizu, K. Yoshino, H. Hanafusa, M. Horiguchi, and S. Takahashi, “Laser diode pumped Pr3+-doped and Pr3+-Yb3+-codoped fluoride fiber amplifiers operating at 1.3 μm,” Electron. Lett.27(22), 1995–1996 (1991). [CrossRef]
  27. X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8 microm wavelength range,” Opt. Lett.33(14), 1578–1580 (2008). [CrossRef] [PubMed]
  28. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-µm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett.21(19), 1594–1596 (1996). [CrossRef] [PubMed]
  29. D. Yang, E. Y. B. Pun, B. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B26(2), 357–363 (2009). [CrossRef]
  30. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glass,” Phys. Rev. B62(10), 6215–6227 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited