OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12213–12221

Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes

Zhuo Ye, Sumit Chaudhary, Ping Kuang, and Kai-Ming Ho  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12213-12221 (2012)
http://dx.doi.org/10.1364/OE.20.012213


View Full Text Article

Enhanced HTML    Acrobat PDF (1991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors investigate light absorption in organic solar cells in which indium tin oxide (ITO) is replaced by a new metallic architecture (grating) as a transparent electrode. Different from typical metal nanowire gratings, our gratings consist of metal nanowalls with nanoscale footprint and (sub)microscale height [Adv. Mater. 23, 2469 (2011)], thus ensuring high optical transmittance and electrical conductivity. Simulations reveal that a broadband and polarization-insensitive light absorption enhancement is achieved via two mechanisms, when such silver nanowall gratings are employed in P3HT:PCBM based solar cells. Overall absorption enhanced by ~23% compared to a reference cell with ITO electrode.

© 2012 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(350.2770) Other areas of optics : Gratings
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

History
Original Manuscript: January 19, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 28, 2012
Published: May 15, 2012

Citation
Zhuo Ye, Sumit Chaudhary, Ping Kuang, and Kai-Ming Ho, "Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes," Opt. Express 20, 12213-12221 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006). [CrossRef]
  2. B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett.93(22), 223304 (2008). [CrossRef]
  3. J. B. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008). [CrossRef]
  4. P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011). [CrossRef] [PubMed]
  5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995). [CrossRef]
  6. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater.11(1), 15–26 (2001). [CrossRef]
  7. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater.5(3), 197–203 (2006). [CrossRef]
  8. J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, “Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime,” Sol. Energy Mater. Sol. Cells92(7), 727–731 (2008). [CrossRef]
  9. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater.4(11), 864–868 (2005). [CrossRef]
  10. M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends,” Appl. Phys. Lett.87(8), 083506 (2005). [CrossRef]
  11. T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C113(41), 17958–17966 (2009). [CrossRef]
  12. T. H. Reilly, J. Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett.92(24), 243304 (2008). [CrossRef]
  13. F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticle,” Appl. Phys. Lett.95(1), 013305 (2009). [CrossRef]
  14. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  15. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009). [CrossRef]
  16. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004). [CrossRef]
  17. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93(12), 123308 (2008). [CrossRef]
  18. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011). [CrossRef] [PubMed]
  19. K. S. Nalwa, J. M. Park, K. M. Ho, and S. Chaudhary, “On realizing higher efficiency polymer solar cells using a textured substrate platform,” Adv. Mater. (Deerfield Beach Fla.)23(1), 112–116 (2011). [CrossRef] [PubMed]
  20. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003). [CrossRef] [PubMed]
  21. Z. Ye, X. Hu, M. Li, K. M. Ho, and P. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006). [CrossRef]
  22. ISU TMM simulation package (2010). http://www.public.iastate.edu/~mli/homepage.html .
  23. M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010). [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press: Orlando FL, 1985).
  25. Database, “Optical constants of In2O3-SnO2 (ITO, Indium tin oxide).” http://refractiveindex.info/?group=CRYSTALS&material=ITO .
  26. A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett.91(6), 061901 (2007). [CrossRef]
  27. A. W. Hains, J. Liu, A. B. F. Martinson, M. D. Irwin, and T. J. Marks, “Anode interfacial tuning via electron-blocking/hole-transport layers and indium tin oxide surface treatment in bulk-heterojunction organic photovoltaic cells,” Adv. Funct. Mater.20(4), 595–606 (2010). [CrossRef]
  28. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324(5924), 232–235 (2009). [CrossRef] [PubMed]
  29. L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate),” Org. Electron.3(3-4), 143–148 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited