OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12222–12232

Open foundry platform for high-performance electronic-photonic integration

Jason S. Orcutt, Benjamin Moss, Chen Sun, Jonathan Leu, Michael Georgas, Jeffrey Shainline, Eugen Zgraggen, Hanqing Li, Jie Sun, Matthew Weaver, Stevan Urošević, Miloš Popović, Rajeev J. Ram, and Vladimir Stojanović  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12222-12232 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents photonic devices with 3 dB/cm waveguide loss fabricated in an existing commercial electronic 45 nm SOI-CMOS foundry process. By utilizing existing front-end fabrication processes the photonic devices are monolithically integrated with electronics in the same physical device layer as transistors achieving 4 ps logic stage delay, without degradation in transistor performance. We demonstrate an 8-channel optical microring-resonator filter bank and optical modulators, both controlled by integrated digital circuits. By developing a device design methodology that requires zero process infrastructure changes, a widely available platform for high-performance photonic-electronic integrated circuits is enabled.

© 2012 OSA

OCIS Codes
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:

Original Manuscript: February 15, 2012
Revised Manuscript: March 29, 2012
Manuscript Accepted: April 2, 2012
Published: May 15, 2012

Jason S. Orcutt, Benjamin Moss, Chen Sun, Jonathan Leu, Michael Georgas, Jeffrey Shainline, Eugen Zgraggen, Hanqing Li, Jie Sun, Matthew Weaver, Stevan Urošević, Miloš Popović, Rajeev J. Ram, and Vladimir Stojanović, "Open foundry platform for high-performance electronic-photonic integration," Opt. Express 20, 12222-12232 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010). [CrossRef]
  2. P. Dumon, W. Bogaerts, R. Baets, J. M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett.45, 13–14 (2009).
  3. M. Hochberg, “Fabless nanophotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2011), CWM1.
  4. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro26(2), 58–66 (2006). [CrossRef]
  5. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y. K. Chen, T. Conway, D. M. Gill, M. Grove, C. Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K. Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 6–15 (2006).
  6. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008). [CrossRef]
  7. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation45, 235–248 (2010).
  8. W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, and M. R. Watts, “Monolithic integration of silicon electronics and photonics,” in Winter Topicals (IEEE 2011), 139–140.
  9. J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19(3), 2335–2346 (2011). [CrossRef] [PubMed]
  10. S. Narasimha, K. Onishi, H. M. Nayfeh, A. Waite, M. Weybright, J. Johnson, C. Fonseca, D. Corliss, C. Robinson, M. Crouse, D. Yang, C. H. J. Wu, A. Gabor, T. Adam, I. Ahsan, M. Belyansky, L. Black, S. Butt, J. Cheng, A. Chou, G. Costrini, C. Dimitrakopoulos, A. Domenicucci, P. Fisher, A. Frye, S. Gates, S. Greco, S. Grunow, M. Hargrove, J. Holt, S. J. Jeng, M. Kelling, B. Kim, W. Landers, G. Larosa, D. Lea, M. H. Lee, X. Liu, N. Lustig, A. McKnight, L. Nicholson, D. Nielsen, K. Nummy, V. Ontalus, C. Ouyang, X. Ouyang, C. Prindle, R. Pal, W. Rausch, D. Restaino, C. Sheraw, J. Sim, A. Simon, T. Standaert, C. Y. Sung, K. Tabakman, C. Tian, R. Van Den Nieuwenhuizen, H. Van Meer, A. Vayshenker, D. Wehella-Gamage, J. Werking, R. C. Wong, J. Yu, S. Wu, R. Augur, D. Brown, X. Chen, D. Edelstein, A. Grill, M. Khare, Y. Li, S. Luning, J. Norum, S. Sankaran, D. Schepis, R. Wachnik, R. Wise, C. Warm, T. Ivers, and P. Agnello, “High performance 45-nm SOI technology with enhanced strain, porous low-k BEOL, and immersion lithography,” in International Electron Devices Meeting (IEEE, 2006), 1–4.
  11. J. Youn, M. Lee, K. Park, and W. Choi, “A 10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector,” IEEE J. Quantum Electron.48(2), 229–236 (2012). [CrossRef]
  12. B. Jang and A. Hassibi, “Biosensor systems in standard CMOS processes: fact or fiction?” IEEE Trans. Ind. Electron.56(4), 979–985 (2009). [CrossRef]
  13. Akustica, “Technology,” retrieved February 7, 2012, http://www.akustica.com/Technology.asp .
  14. C.-L. Dai, F.-Y. Xiao, Y.-Z. Juang, and C.-F. Chiu, “An approach to fabricating microstructures that incorporate circuits using a post-CMOS process,” J. Micromech. Microeng.15(1), 98–103 (2005). [CrossRef]
  15. R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM's next-generation server processor,” IEEE Micro30(2), 7–15 (2010). [CrossRef]
  16. L. Sungjae, B. Jagannathan, S. Narasimha, A. Chou, N. Zamdmer, J. Johnson, R. Williams, L. Wagner, K. Jonghae, J. O. Plouchart, J. Pekarik, S. Springer, and G. Freeman, “Record RF performance of 45-nm SOI CMOS Technology,” in Electron Devices Meeting (IEEE 2007), 255–258.
  17. J. S. Orcutt and R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010). [CrossRef]
  18. J. S. Orcutt, A. Khilo, M. A. Popovic, C. W. Holzwarth, B. Moss, L. Hanqing, M. S. Dahlem, T. D. Bonifield, F. X. Kartner, E. P. Ippen, J. L. Hoyt, R. J. Ram, and V. Stojanovic, “Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), CTuBB3.
  19. J. S. Orcutt, “Scaled CMOS photonics,” in Photonics in Switching (Optical Society of America, 2010), PMC4.
  20. S. Sridaran and S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express18(4), 3850–3857 (2010). [CrossRef] [PubMed]
  21. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  22. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  23. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Tech.27(18), 4076–4083 (2009). [CrossRef]
  24. M. A. Popovic, T. Barwicz, E. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), CTuCC1.
  25. M. A. Popovic, Theory and design of high-index-contrast microphotonic circuits (Massachusetts Institute of Technology, 2008).
  26. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  27. M. Georgas, J. Leu, B. Moss, S. Chen, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (IEEE, 2011), 1–8.
  28. P. Dong, W. Qian, H. Liang, R. Shafiiha, X. Wang, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators,” Opt. Express18(24), 24504–24509 (2010). [CrossRef] [PubMed]
  29. M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, “A monolithically-integrated optical receiver in standard 45-nm SOI,” in European Solid State Circuits Conference (IEEE, 2011), 407–410.
  30. J. Leu and V. Stojanovic, “Injection-locked clock receiver for monolithic optical link in 45nm SOI,” in Asian Solid State Circuits Conference (IEEE, 2011), 149–152.
  31. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  32. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007). [CrossRef] [PubMed]
  33. F. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, Z. Xuezhe, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10 Gbps, 530 fJ/b optical transceiver circuits in 40 nm CMOS,” in Symposium on VLSI Circuits (IEEE, 2011), 290–291.
  34. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21989–22003 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited