OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12233–12246

Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms

Hanna Karlsson, Ingemar Fredriksson, Marcus Larsson, and Tomas Strömberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12233-12246 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectroscopic probe with multiple detecting fibers was used for quantifying absorption and scattering in liquid optical phantoms. The phantoms were mixtures of Intralipid and red and blue food dyes. Intensity calibration for the detecting fibers was undertaken using either a microsphere suspension (absolute calibration) or a uniform detector illumination (relative calibration between detectors). Two different scattering phase functions were used in an inverse Monte Carlo algorithm. Data were evaluated for residual spectra (systematic deviations and magnitude) and accuracy in estimation of scattering and absorption. Spectral fitting was improved by allowing for a 10% intensity relaxation in the optimization algorithm. For a multi-detector setup, non-systematic residual spectrum was only found using the more complex Gegenbauer-kernel phase function. However, the choice of phase function did not influence the accuracy in the estimation of absorption and scattering. Similar estimation accuracy as in the multi-detector setup was also obtained using either two relative calibrated detectors or one absolute calibrated detector at a fiber separation of 0.46 mm.

© 2012 OSA

OCIS Codes
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media
(300.6550) Spectroscopy : Spectroscopy, visible
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:

Original Manuscript: February 16, 2012
Revised Manuscript: April 6, 2012
Manuscript Accepted: April 6, 2012
Published: May 15, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Hanna Karlsson, Ingemar Fredriksson, Marcus Larsson, and Tomas Strömberg, "Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms," Opt. Express 20, 12233-12246 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996). [CrossRef] [PubMed]
  2. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  3. J. L. Hollmann and L. V. Wang, “Multiple-source optical diffusion approximation for a multilayer scattering medium,” Appl. Opt.46(23), 6004–6009 (2007). [CrossRef] [PubMed]
  4. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16(12), 2935–2945 (1999). [CrossRef]
  5. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005). [CrossRef] [PubMed]
  6. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38(22), 4939–4950 (1999). [CrossRef] [PubMed]
  7. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003). [CrossRef] [PubMed]
  8. T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011). [CrossRef] [PubMed]
  9. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  10. N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010). [CrossRef] [PubMed]
  11. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  12. T. Lindbergh, I. Fredriksson, M. Larsson, and T. Strömberg, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express17(3), 1610–1621 (2009). [CrossRef] [PubMed]
  13. L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994). [CrossRef] [PubMed]
  14. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007). [CrossRef]
  15. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  16. H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011). [CrossRef]
  17. L. O. Reynolds and N. J. McCormick, “Approximate two-parameter phase function for light-scattering,” J. Opt. Soc. Am.70(10), 1206–1212 (1980). [CrossRef]
  18. I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).
  19. T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010). [CrossRef] [PubMed]
  20. R. L. van Veen, W. Verkruysse, and H. J. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27(4), 246–248 (2002). [CrossRef] [PubMed]
  21. N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010). [CrossRef] [PubMed]
  22. I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011). [CrossRef]
  23. A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited