OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12318–12325

Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator

Amir Hosseini, Xiaochuan Xu, Harish Subbaraman, Che-Yun Lin, Somayeh Rahimi, and Ray T. Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12318-12325 (2012)
http://dx.doi.org/10.1364/OE.20.012318


View Full Text Article

Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a dispersion engineered slow light silicon-based photonic crystal waveguide PIN modulator. Low-dispersion slow light transmission over 18nm bandwidth under the silica light line with a group index of 26.5 is experimentally confirmed. We investigate the variations of the modulator figure of merit, Vπ × L, as a function of the optical carrier wavelength over the bandwidth of the fundamental photonic crystal waveguide defect mode. A large signal operation with a record low maximum Vπ × L of 0.0464 V⋅mm over the low-dispersion optical spectral range is demonstrated. We also report the device operation at 2GHz.

© 2012 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: March 14, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 11, 2012
Published: May 16, 2012

Citation
Amir Hosseini, Xiaochuan Xu, Harish Subbaraman, Che-Yun Lin, Somayeh Rahimi, and Ray T. Chen, "Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator," Opt. Express 20, 12318-12325 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12318


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  2. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19(9), 2052–2059 (2002). [CrossRef]
  3. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B77(11), 115124 (2008). [CrossRef]
  4. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005). [CrossRef]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001). [CrossRef] [PubMed]
  6. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011). [CrossRef] [PubMed]
  7. H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron.48(2), 210–220 (2012). [CrossRef]
  8. J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett.94(24), 241107 (2009). [CrossRef]
  9. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  10. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  11. S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010). [CrossRef]
  12. S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express19(22), 21832–21841 (2011). [CrossRef] [PubMed]
  13. L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J.2(3), 404–414 (2010). [CrossRef]
  14. A. Mekis and J. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol.19(6), 861–865 (2001). [CrossRef]
  15. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express17(20), 17338–17343 (2009). [CrossRef] [PubMed]
  16. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett.98(3), 031107 (2011). [CrossRef]
  17. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006). [CrossRef]
  18. G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999). [CrossRef]
  19. C. Y. Lin, A. X. Wang, W. C. Lai, J. L. Covey, S. Chakravarty, and R. T. Chen, “Coupling loss minimization of slow light slotted photonic crystal waveguides using mode matching with continuous group index perturbation,” Opt. Lett.37(2), 232–234 (2012). [CrossRef]
  20. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron.14(4), 1132–1139 (2008). [CrossRef]
  21. Y. Tang and B. Wang, “Study of active width-reduced line-defect photonic crystal waveguides for high speed applications,” Proc. SPIE7135, 71350R, 71350R-8 (2008). [CrossRef]
  22. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010). [CrossRef] [PubMed]
  23. L. Gu, Micro-and Nano-Periodic-Structure-Based Devices for Laser Beam Control 99–100 (ProQuest, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited