OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12326–12340

The Hong-Ou-Mandel effect in the context of few-photon scattering

Paolo Longo, Jared H. Cole, and Kurt Busch  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12326-12340 (2012)
http://dx.doi.org/10.1364/OE.20.012326


View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Hong-Ou-Mandel effect is studied in the context of two-photon transport in a one-dimensional waveguide with a single scatterer. We numerically investigate the scattering problem within a time-dependent, wave-function-based framework. Depending on the realization of the scatterer and its properties, we calculate the joint probability of finding both photons on either side of the waveguide after scattering. We specifically point out how Hong-Ou-Mandel interferometry techniques could be exploited to identify effective photon–photon interactions which are mediated by the scatterer. The Hong-Ou-Mandel dip is discussed in detail for the case of a single two-level atom embedded in the waveguide, and dissipation and dephasing are taken into account by means of a quantum jump approach.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(290.0290) Scattering : Scattering

ToC Category:
Quantum Optics

History
Original Manuscript: March 16, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 5, 2012
Published: May 16, 2012

Citation
Paolo Longo, Jared H. Cole, and Kurt Busch, "The Hong-Ou-Mandel effect in the context of few-photon scattering," Opt. Express 20, 12326-12340 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  2. Y. L. Lim and A. Beige, “Generalized Hong-Ou-Mandel experiments with bosons and fermions,” New J. Phys.7, 155 (2005). [CrossRef]
  3. V. Giovannetti, D. Frustaglia, F. Taddei, and R. Fazio, “Electronic Hong-Ou-Mandel interferometer for multimode entanglement detection,” Phys. Rev. B74, 115315 (2006). [CrossRef]
  4. I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005). [CrossRef] [PubMed]
  5. H. Takesue, “1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett.90, 204101 (2007). [CrossRef]
  6. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun.2, 224 (2011). [CrossRef] [PubMed]
  7. S. M. Wang, S. Y. Mu, C. Zhu, X. Y. Gong, P. Xu, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial,” Opt. Express20, 5213–5218 (2012). [CrossRef] [PubMed]
  8. P. Longo, P. Schmitteckert, and K. Busch, “Dynamics of photon transport through quantum impurities in dispersion-engineered one-dimensional systems,” J. Opt. A: Pure Appl. Opt.11, 114009 (2009). [CrossRef]
  9. P. Longo, P. Schmitteckert, and K. Busch, “Few-photon transport in low-dimensional systems,” Phys. Rev. A83, 063828 (2011). [CrossRef]
  10. C. G. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, 2005).
  11. Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun.63, 118–122 (1987). [CrossRef]
  12. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24, 711–713 (1999). [CrossRef]
  13. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett.101, 100501 (2008). [CrossRef] [PubMed]
  14. P. Longo, P. Schmitteckert, and K. Busch, “Few-photon transport in low-dimensional systems: interaction-induced radiation trapping,” Phys. Rev. Lett.104, 023602 (2010). [CrossRef] [PubMed]
  15. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett.30, 2001–2003 (2005). [CrossRef] [PubMed]
  16. E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A82, 033804 (2010). [CrossRef]
  17. J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A79, 023837 (2009). [CrossRef]
  18. J. T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett.98, 153003 (2007). [CrossRef] [PubMed]
  19. J. T. Shen and S. Fan, “Strongly correlated multi-particle transport in one dimension through a quantum impurity,” Phys. Rev. A76, 062709 (2007). [CrossRef]
  20. T. Shi and C. P. Sun, “Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled resonator arrays,” Phys. Rev. B79, 205111 (2009). [CrossRef]
  21. D. Witthaut and A.S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys.12, 043052 (2009). [CrossRef]
  22. M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys.70, 101–144 (1998) [CrossRef]
  23. K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quantum optics,” J. Opt. Soc. Am. B10, 524–538 (1993) [CrossRef]
  24. Y. Saad, “Analysis of some Krylov subspace approximations to the matrix exponential operator,” SIAM Journal on Numerical Analysis29, 209–228 (1992). [CrossRef]
  25. J. Niegemann, L. Tkeshelashvili, and K. Busch, “Higher-order time-domain simulations of Maxwell’s equations using Krylov-subspace methods,” J. Comput. Theor. Nanosci.4, 627–634 (2007).
  26. M. Pototschnig, J. Niegemann, L. Tkeshelashvili, and K. Busch, “Time-domain simulation of the nonlinear Maxwell equations using operator-exponential techniques,” IEEE Trans. Ant. Propagat.57, 475–483 (2009). [CrossRef]
  27. K. Busch, G. v. Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007). [CrossRef]
  28. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys.2, 849–855 (2006). [CrossRef]
  29. A. Greentree, C. Tahan, J. Cole, and L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys.2, 856–861 (2006). [CrossRef]
  30. D. Angelakis, M. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A76, 31805 (2007). [CrossRef]
  31. M. I. Makin, J. H. Cole, C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Time evolution of the one-dimensional Jaynes-Cummings-Hubbard Hamiltonian,” Phys. Rev. A80, 043842 (2009). [CrossRef]
  32. J. Q. Quach, C.-H. Su, A. M. Martin, A. D. Greentree, and L. C. L. Hollenberg, “Reconfigurable quantum metamaterials,” Opt. Express19, 11018–11033 (2011). [CrossRef] [PubMed]
  33. M. T. C. Wong and C. K. Law, “Two-polariton bound states in the Jaynes-Cummings-Hubbard model,” Phys. Rev. A83, 055802 (2011). [CrossRef]
  34. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys.3, 807–812 (2007). [CrossRef]
  35. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009). [CrossRef] [PubMed]
  36. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. USA106, 21045–21050 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited