OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12407–12415

Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers

Alexander M. Stolyarov, Alexander Gumennik, William McDaniel, Ofer Shapira, Brent Schell, Fabien Sorin, Ken Kuriki, Gilles Benoit, Aimee Rose, John D. Joannopoulos, and Yoel Fink  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12407-12415 (2012)
http://dx.doi.org/10.1364/OE.20.012407


View Full Text Article

Enhanced HTML    Acrobat PDF (1828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an in-fiber gas phase chemical detection architecture in which a chemiluminescent (CL) reaction is spatially and spectrally matched to the core modes of hollow photonic bandgap (PBG) fibers in order to enhance detection efficiency. A peroxide-sensitive CL material is annularly shaped and centered within the fiber’s hollow core, thereby increasing the overlap between the emission intensity and the intensity distribution of the low-loss fiber modes. This configuration improves the sensitivity by 0.9 dB/cm compared to coating the material directly on the inner fiber surface, where coupling to both higher loss core modes and cladding modes is enhanced. By integrating the former configuration with a custom-built optofluidic system designed for concomitant controlled vapor delivery and emission measurement, we achieve a limit-of-detection of 100 parts per billion (ppb) for hydrogen peroxide vapor. The PBG fibers are produced by a new fabrication method whereby external gas pressure is used as a control knob to actively tune the transmission bandgaps through the entire visible range during the thermal drawing process.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: April 16, 2012
Revised Manuscript: May 1, 2012
Manuscript Accepted: May 1, 2012
Published: May 16, 2012

Citation
Alexander M. Stolyarov, Alexander Gumennik, William McDaniel, Ofer Shapira, Brent Schell, Fabien Sorin, Ken Kuriki, Gilles Benoit, Aimee Rose, John D. Joannopoulos, and Yoel Fink, "Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers," Opt. Express 20, 12407-12415 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Tai, H. Tanaka, and T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392--µm line of a He-Ne laser,” Opt. Lett.12(6), 437–439 (1987). [CrossRef] [PubMed]
  2. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem.38(1-3), 42–47 (1997). [CrossRef]
  3. J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt19(3), 211–227 (2000). [CrossRef]
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sörensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express12(17), 4080–4087 (2004). [CrossRef] [PubMed]
  5. A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1263–1267 (2011). [CrossRef] [PubMed]
  6. T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature382(6593), 697–700 (1996). [CrossRef] [PubMed]
  7. P. Yeh, A. Yariv, and E. J. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  8. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express9(13), 748–779 (2001). [CrossRef] [PubMed]
  9. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B69(3), 035316 (2004). [CrossRef]
  10. Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev.41(3), 1261–1296 (2012). [CrossRef] [PubMed]
  11. M. S. Meaney and V. L. McGuffin, “Luminescence-based methods for sensing and detection of explosives,” Anal. Bioanal. Chem.391(7), 2557–2576 (2008). [CrossRef] [PubMed]
  12. S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev.107(4), 1339–1386 (2007). [CrossRef] [PubMed]
  13. L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res.41(12), 1596–1608 (2008). [CrossRef] [PubMed]
  14. P. Scrimin and L. J. Prins, “Sensing through signal amplification,” Chem. Soc. Rev.40(9), 4488–4505 (2011). [CrossRef] [PubMed]
  15. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  16. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol.17(11), 2039–2041 (1999). [CrossRef]
  17. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  18. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express12(8), 1510–1517 (2004). [CrossRef] [PubMed]
  19. Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express18(15), 15697–15703 (2010). [CrossRef] [PubMed]
  20. D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express20(6), 6029–6035 (2012). [CrossRef] [PubMed]
  21. R. Deans, A. Rose, K. M. Bardon, L. F. Hancock, and T. M. Swager, “Detection of explosives and other species,” Nomadics, Inc., U. S. Patent 7,799,573 B2 (2010).
  22. J.-S. Yang and T. M. Swager, “Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials,” J. Am. Chem. Soc.120(21), 5321–5322 (1998). [CrossRef]
  23. J. A. Lind and G. L. Kok, “Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,” J. Geophys. Res.91(D7), 7889–7895 (1986). [CrossRef]
  24. F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc.130(12), 3712–3713 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited