OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12422–12431

Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks

Faisal Nadeem Khan, Yudi Zhou, Alan Pak Tao Lau, and Chao Lu  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12422-12431 (2012)
http://dx.doi.org/10.1364/OE.20.012422


View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple and cost-effective technique for modulation format identification (MFI) in next-generation heterogeneous fiber-optic networks using an artificial neural network (ANN) trained with the features extracted from the asynchronous amplitude histograms (AAHs). Results of numerical simulations conducted for six different widely-used modulation formats at various data rates demonstrate that the proposed technique can effectively classify all these modulation formats with an overall estimation accuracy of 99.6% and also in the presence of various link impairments. The proposed technique employs extremely simple hardware and digital signal processing (DSP) to enable MFI and can also be applied for the identification of other modulation formats at different data rates without necessitating hardware changes.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 23, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 11, 2012
Published: May 16, 2012

Citation
Faisal Nadeem Khan, Yudi Zhou, Alan Pak Tao Lau, and Chao Lu, "Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks," Opt. Express 20, 12422-12431 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. T. Monroy, D. Zibar, N. G. Gonzalez, and R. Borkowski, “Cognitive heterogeneous reconfigurable optical networks (CHRON): enabling technologies and techniques,” in 2011 13th International Conference on Transparent Optical Networks (ICTON)(2011), paper Th.A1.2.
  2. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol.28(4), 466–475 (2010). [CrossRef]
  3. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol.22(1), 294–304 (2004). [CrossRef]
  4. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol.16(1), 20–45 (2010). [CrossRef]
  5. C. K. Chan, Optical Performance Monitoring (Academic, 2010).
  6. N. Hanik, A. Gladisch, C. Caspar, and B. Strebel, “Application of amplitude histograms to monitor performance of optical channels,” Electron. Lett.35(5), 403–404 (1999). [CrossRef]
  7. B. Kozicki, O. Takuya, and T. Hidehiko, “Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis,” J. Lightwave Technol.26(10), 1353–1361 (2008). [CrossRef]
  8. S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThP5.
  9. T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” J. Lightwave Technol.27(16), 3729–3736 (2009). [CrossRef]
  10. X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and A. E. Willner, “Applications of artificial neural networks in optical performance monitoring,” J. Lightwave Technol.27(16), 3580–3589 (2009). [CrossRef]
  11. F. N. Khan, T. S. R. Shen, Y. Zhou, A. P. T. Lau, and C. Lu, “Optical performance monitoring using artificial neural networks trained with empirical moments of asynchronously sampled signal amplitudes,” IEEE Photon. Technol. Lett.24(12), 982–984 (2012).
  12. F. N. Khan, A. P. T. Lau, C. Lu, and P. K. A. Wai, “Chromatic dispersion monitoring for multiple modulation formats and data rates using sideband optical filtering and asynchronous amplitude sampling technique,” Opt. Express19(2), 1007–1015 (2011). [CrossRef] [PubMed]
  13. B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw.6(11), 1257–1269 (2007). [CrossRef]
  14. A. P. T. Lau, Z. Li, F. N. Khan, C. Lu, and P. K. A. Wai, “Analysis of signed chromatic dispersion monitoring by waveform asymmetry for differentially-coherent phase-modulated systems,” Opt. Express19(5), 4147–4156 (2011). [CrossRef] [PubMed]
  15. F. N. Khan, A. P. T. Lau, Z. Li, C. Lu, and P. K. A. Wai, “OSNR monitoring for RZ-DQPSK systems using half-symbol delay-tap sampling technique,” IEEE Photon. Technol. Lett.22(11), 823–825 (2010). [CrossRef]
  16. F. N. Khan, A. P. T. Lau, Z. Li, C. Lu, and P. K. A. Wai, “Statistical analysis of optical signal-to-noise ratio monitoring using delay-tap sampling,” IEEE Photon. Technol. Lett.22(3), 149–151 (2010). [CrossRef]
  17. Y. Zhou, T. B. Anderson, K. Clarke, A. Nirmalathas, and K. L. Lee, “Bit-rate identification using asynchronous delayed sampling,” IEEE Photon. Technol. Lett.21(13), 893–895 (2009). [CrossRef]
  18. N. G. Gonzalez, D. Zibar, and I. T. Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010.), paper P6.11.
  19. E. E. Azzouz and A. K. Nandi, Automatic Modulation Recognition of Communication Signals (Kluwer Academic Publishers, Boston, 1996).
  20. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “A survey of automatic modulation classification techniques: classical approaches and new trends,” IET Commun.1(2), 137–156 (2007). [CrossRef]
  21. A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation recognition of communication signals,” IEEE Trans. Commun.46(4), 431–436 (1998). [CrossRef]
  22. W. Wei and J. M. Mendel, “Maximum-likelihood classification for digital amplitude-phase modulations,” IEEE Trans. Commun.48(2), 189–193 (2000). [CrossRef]
  23. W. Su, J. L. Xu, and M. Zhou, “Real-time modulation classification based on maximum-likelihood,” IEEE Commun. Lett.12(11), 801–803 (2008). [CrossRef]
  24. A. K. Nandi and E. E. Azzouz, “Modulation recognition using artificial neural networks,” Signal Process.56(2), 165–175 (1997). [CrossRef]
  25. Z. Yaqin, R. Guanghui, W. Xuexia, W. Zhilu, and G. Xuemai, “Automatic digital modulation recognition using artificial neural networks,” in Proceedings of the 2003 International Conference on Neural Networks and Signal Processing (2003), Vol.1, pp. 257–260.
  26. M. L. D. Wong and A. K. Nandi, “Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons,” in Sixth International, Symposium on Signal Processing and its Applications (2001.), Vol. 2, pp. 390–393.
  27. I. Kaastra and M. Boyd, “Designing a neural network for forecasting financial and economic time series,” Neurocomputing10(3), 215–236 (1996). [CrossRef]
  28. H. Yu and B. M. Wilamowski, “Levenberg-Marquardt Training,” in The Industrial Electronics Handbook, Vol. 5−Intelligent Systems, 2nd ed. (CRC Press, Boca Raton, 2011).
  29. VPIsystemsTM, “VPltransmissionMakerTM.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited