OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12449–12456

Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber

Jing Xu, Christophe Peucheret, Jens Kristian Lyngsø, and Lasse Leick  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12449-12456 (2012)
http://dx.doi.org/10.1364/OE.20.012449


View Full Text Article

Enhanced HTML    Acrobat PDF (1704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current technologies are fast approaching the capacity limit of single mode fibers (SMFs). Hollow-core photonic bandgap fibers (HC-PBGFs) are expected to provide attractive long-term solutions in terms of ultra-low fiber nonlinearities associated with the possibility of mode scaling, thus enabling mode division multiplexing (MDM). In this work, we demonstrate MDM over a HC-PBGF for the first time. Two 10.7 Gbps channels are simultaneously transmitted over two modes of a 30-m long 7-cell HC-PBGF. Bit error ratio (BER) performances below the FEC threshold limit (3.3 × 10−3) are shown for both data channels when the two modes are transmitted simultaneously. No power penalty and up to 3 dB power penalty at a BER of 10−9 are measured for single mode transmission using the fundamental and the LP11 mode, respectively. The performance of this exploratory demonstration is expected to improve significantly if advanced mode launching and detection methods are used.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 5, 2012
Revised Manuscript: May 12, 2012
Manuscript Accepted: May 12, 2012
Published: May 16, 2012

Citation
Jing Xu, Christophe Peucheret, Jens Kristian Lyngsø, and Lasse Leick, "Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber," Opt. Express 20, 12449-12456 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realisation of 3×3 MIMO system with mode group diversity multiplexing limited by modal noise,” in the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.
  2. C. P. Tsekrekos, M. de Boer, A. Martinez, F. M. J. Willems, and A. M. J. Koonen, “Demonstration of a Transparent 2-Input 2-Output Mode Group Diversity Multiplexing Link,” in the European Conference on Optical Communications (Cannes, France, 2006), paper We3.P.145.
  3. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.
  4. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express19(17), 16672–16679 (2011). [CrossRef] [PubMed]
  5. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express19(17), 16593–16600 (2011). [CrossRef] [PubMed]
  6. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012). [CrossRef]
  7. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012). [CrossRef] [PubMed]
  8. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express16(6), 4337–4346 (2008). [CrossRef] [PubMed]
  9. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm,” Opt. Express17(26), 23468–23473 (2009). [CrossRef] [PubMed]
  10. http://nktphotonics.com/files/files/HC-1550-04-100409.pdf
  11. B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper PD24.
  12. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005). [CrossRef] [PubMed]
  13. C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett.41(1), 27–29 (2005). [CrossRef]
  14. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express14(16), 7329–7341 (2006). [CrossRef] [PubMed]
  15. B. Mangan, J. K. Lyngsø, and P. J. Roberts, “Realization of low loss and polarization maintaining hollow core photonic crystal fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JFG4.
  16. http://www.jcmwave.com
  17. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express16(22), 17972–17981 (2008). [CrossRef] [PubMed]
  18. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express12(8), 1485–1496 (2004). [CrossRef] [PubMed]
  19. K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express12(3), 394–400 (2004). [CrossRef] [PubMed]
  20. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, “Modeling and simulation of next-generation multimode fiber links,” J. Lightwave Technol.21(5), 1242–1255 (2003). [CrossRef]
  21. V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun.232(1-6), 229–237 (2004). [CrossRef]
  22. N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. Gray, F. Poletti, and D. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited