OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12473–12486

Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire

Mohamed H. El Sherif, Osman S. Ahmed, Mohamed H. Bakr, and Mohamed A. Swillam  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12473-12486 (2012)
http://dx.doi.org/10.1364/OE.20.012473


View Full Text Article

Enhanced HTML    Acrobat PDF (2896 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a surface plasmon polarization-controlled beam splitter based on plasmonic slot waveguides (PSWs). It couples light of different polarizations from a silicon nanowire into multilevel plasmonic networks. Two orthogonal PSWs are utilized as the guiding waveguides for each polarization. The proposed structure overcomes inherent polarization limitation in plasmonic structures by providing multilevel optical signal processing. This ability of controlling polarization can be exploited to achieve 3-D multilevel plasmonic circuits and polarization controlled chip to chip channel. Our device is of a compact size and a wide band operation. The device utilizes both quasi-TE and quasi-TM polarizations to allow for increased optical processing capability. The crosstalk is minimal between the two polarizations propagating in two different levels. We achieve good transmission efficiency at a wavelength of 1.55 µm for different polarizations. We analyze and simulate the structure using the FDTD method. The proposed device can be utilized in integrated chips for optical signal processing and optical computations.

© 2012 OSA

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 13, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 4, 2012
Published: May 17, 2012

Citation
Mohamed H. El Sherif, Osman S. Ahmed, Mohamed H. Bakr, and Mohamed A. Swillam, "Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire," Opt. Express 20, 12473-12486 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  6. M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002). [CrossRef]
  7. S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999). [CrossRef]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  9. C. J. Brooks, A. P. Knights, and P. E. Jessop, “Vertically-integrated multimode interferometer coupler for 3D photonic circuits in SOI,” Opt. Express19(4), 2916–2921 (2011). [CrossRef] [PubMed]
  10. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  11. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  12. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008). [CrossRef]
  13. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006). [CrossRef] [PubMed]
  14. H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006). [CrossRef]
  15. C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008). [CrossRef]
  16. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett.36(18), 3630–3632 (2011). [CrossRef] [PubMed]
  17. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005). [CrossRef] [PubMed]
  18. T. Yamazaki, J. Yamauchi, and H. Nakano, “A branch-type TE/TM wave splitter using a light-guiding metal line,” J. Lightwave Technol.25(3), 922–928 (2007). [CrossRef]
  19. J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011). [CrossRef]
  20. M. Alam, J. S. Aitchsion, and M. Mojahedi, “Compact hybrid TM-pass polarizer for silicon-on-insulator platform,” Appl. Opt.50(15), 2294–2298 (2011). [CrossRef] [PubMed]
  21. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004). [CrossRef]
  22. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011). [CrossRef] [PubMed]
  23. B. Lau, M. A. Swillam, and A. S. Helmy, “Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers,” Opt. Express18(26), 27048–27059 (2010). [CrossRef] [PubMed]
  24. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007). [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  26. F. D. T. D. Lumerical, Lumerical Soultions, Inc. http://www.lumerical.com .
  27. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero lossess at sharp bends,” Opt. Express30, 1186–1188 (2005).
  28. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007), Chap. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited