OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12498–12507

Normal and diseased personal eye modeling using age-appropriate lens parameters

Ying-Ling Chen, L. Shi, J. W. L. Lewis, and M. Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12498-12507 (2012)
http://dx.doi.org/10.1364/OE.20.012498


View Full Text Article

Enhanced HTML    Acrobat PDF (3243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Personalized eye modeling of normal and diseased eye conditions is attractive due to the recent availability of detailed ocular measurements in clinic environments and the promise of its medical and industrial applications. In the customized modeling, the optical properties of the crystalline lens including the gradient refractive index, the lens bio-geometry and orientation are typically assigned with average lens parameters from literature since typically they are not clinically available. Although, through the optical optimization by assigning lens parameters as variables, the clinical measured wavefront aberration can be achieved, the optimized lens biometry and orientation often end up at edges of the statistical distribution. Without an effective validation of these models today, the fidelity of the final lens (and therefore the model) remains questionable. To develop a more reliable customized model without detailed lens information, we incorporate age-appropriate lens parameters as the initial condition of optical optimization. A biconic lens optimization was first performed to provide a correct lens profile for accurate lower order aberration and then followed by the wavefront optimization. Clinical subjects were selected from all ages with both normal and diseased corneal and refractive conditions. 19 ammetropic eyes ( + 4D to −11D), and 16 keratoconus eyes (mild to moderate with cylinder 0.25 to 6D) were modeled. Age- and gender-corrected refractive index was evaluated. Final models attained the lens shapes comparable to the statistical distribution in their age.

© 2012 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: March 6, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 15, 2012
Published: May 17, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Ying-Ling Chen, L. Shi, J. W. L. Lewis, and M. Wang, "Normal and diseased personal eye modeling using age-appropriate lens parameters," Opt. Express 20, 12498-12507 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gullstrand, “The optical system of the eye,” in Physiological Optics 3rd ed., H. von Helmholtz (Hamburg, Voss, 1909), 1, 350–358.
  2. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am.61(11), 1522–1529 (1971). [CrossRef]
  3. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A2(8), 1273–1281 (1985). [CrossRef] [PubMed]
  4. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  5. R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci.83(6), 371–381 (2006). [CrossRef] [PubMed]
  6. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express15(5), 2204–2218 (2007). [CrossRef] [PubMed]
  7. Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express14(23), 11477–11485 (2006). [CrossRef] [PubMed]
  8. C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg.20(5), S565–S569 (2004). [PubMed]
  9. J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg.20(5), 439–443 (2004). [PubMed]
  10. D. Y. Lin and E. E. Manche, “Custom-contoured ablation pattern method for the treatment of decentered laser ablations,” J. Cataract Refract. Surg.30(8), 1675–1684 (2004). [CrossRef] [PubMed]
  11. J. B. Almeida and A. M. Garcia, “Theoretical calculation of a contact lens thickness designed to correct the eye’s monochromatic aberrations,” Optom. Vis. Sci.82(1), 59–63 (2005). [PubMed]
  12. J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum.38, 471–476 (2002). [PubMed]
  13. W. N. Charman, “Wavefront technology: past, present and future,” Cont. Lens Anterior Eye28(2), 75–92 (2005). [CrossRef] [PubMed]
  14. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis.8(4), 29 (2008). [CrossRef] [PubMed]
  15. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  16. D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997). [CrossRef] [PubMed]
  17. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res.46(14), 2236–2250 (2006). [CrossRef] [PubMed]
  18. S. Stenstrom, “Investigation of the variation and the correlation of the optical elements of human eye Part V—Chapter III (D. Woolf, Trans.),” Am. J. Optom. Arch. Am. Acad. Optom.25, 438–449 (1948). [PubMed]
  19. N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci.38(2), 321–333 (1997). [PubMed]
  20. R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Ophthalmic Physiol. Opt.13(1), 41–47 (1993). [CrossRef] [PubMed]
  21. H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci.69(9), 698–701 (1992). [CrossRef] [PubMed]
  22. L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci.46(7), 2317–2327 (2005). [CrossRef] [PubMed]
  23. A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci.44(3), 953–960 (2003). [CrossRef] [PubMed]
  24. D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci.46(9), 3074–3080 (2005). [CrossRef] [PubMed]
  25. F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res.41(21), 2799–2810 (2001). [CrossRef] [PubMed]
  26. S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus43(3), 152–156 (2006). [PubMed]
  27. Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci.51, E-Abstract 4593 (2010).
  28. L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci.79(10), 650–657 (2002). [CrossRef] [PubMed]
  29. J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res.29(12), 1685–1692 (1989). [CrossRef] [PubMed]
  30. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24(8), 2157–2174 (2007). [CrossRef] [PubMed]
  31. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express16(3), 1692–1703 (2008). [CrossRef] [PubMed]
  32. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A27(11), 2432–2441 (2010). [CrossRef] [PubMed]
  33. G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom.86(1), 3–18 (2003). [CrossRef] [PubMed]
  34. J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci.52, 4525–4533 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited