OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12515–12520

Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates

Yongqiang Pang, Haifeng Cheng, Yongjiang Zhou, Zenggnag Li, and Jun Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12515-12520 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrathin and simultaneously broadband high impedance surface absorber based on a metamaterial (MM) substrate is presented at microwave frequencies. The MM substrate is designed using metallic split ring resonators (SRRs) vertically embedded into a dielectric slab. Both the simulated and experimental results display two absorption peaks and an expanded absorption bandwidth of less than −10 dB compared to conventional ultrathin absorbers. By analyzing the field distributions and the substrate impedance characteristics, it is found that this feature is mainly related to the LC resonance of the substrate caused by the embedded SRRs. Our results demonstrate the great feasibility of broadening the absorption bandwidth of the ultrathin high impedance surface absorbers by the MMs incorporation.

© 2012 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 5, 2012
Revised Manuscript: April 24, 2012
Manuscript Accepted: May 2, 2012
Published: May 17, 2012

Yongqiang Pang, Haifeng Cheng, Yongjiang Zhou, Zenggnag Li, and Jun Wang, "Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates," Opt. Express 20, 12515-12520 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009). [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  7. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett.99(26), 264101 (2011). [CrossRef]
  8. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011). [CrossRef] [PubMed]
  9. Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys.110(4), 044102 (2011). [CrossRef]
  10. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B80(3), 033108 (2009). [CrossRef]
  11. M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res.108, 37–49 (2010). [CrossRef]
  12. S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys.108(6), 064913 (2010). [CrossRef]
  13. L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys.110(6), 063702 (2011). [CrossRef]
  14. O. Acher, “Permeability enhancement of soft magnetic films through metamaterial structures,” J. Magn. Magn. Mater.320(23), 3276–3281 (2008). [CrossRef]
  15. Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett.94(16), 162502 (2009). [CrossRef]
  16. Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys.106(10), 103929 (2009). [CrossRef]
  17. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett.97(2), 021111 (2010). [CrossRef]
  18. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011). [CrossRef] [PubMed]
  19. Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett.41(17), 936–937 (2005). [CrossRef]
  20. O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag.57(10), 3119–3125 (2009). [CrossRef]
  21. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010). [CrossRef]
  22. A. Kazemzadeh and A. Karlsson, “On the absorption mechanism of ultra thin absorbers,” IEEE Trans. Antenn. Propag.58(10), 3310–3315 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited