OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12521–12529

SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography

Peng Zhu, Haofei Shi, and L. Jay Guo  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12521-12529 (2012)
http://dx.doi.org/10.1364/OE.20.012521


View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the analyses of surface plasmon polaritons (SPPs) coupling induced interference in metal/dielectric (M/D) multilayer metamaterials and techniques to improve the performance of sub-wavelength plasmonic lithography. Expressions of beam spreading angles and interference patterns are derived from analyses of numerical simulations and the coupled mode theory. The new understandings provide useful guidelines and design criteria for plasmonic lithography. With proper layer structure design, sub-wavelength uniform periodic patterns with feature size of 1/12 of the mask's period can be realized. High pattern contrast of 0.8 and large field depth of 80 nm are also demonstrated numerically by considering the SPPs coupling in the photoresist. Both high contrast and large image depth are crucial for practical application of plasmonic lithography.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves
(260.3160) Physical optics : Interference
(110.4235) Imaging systems : Nanolithography

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 11, 2012
Manuscript Accepted: April 30, 2012
Published: May 17, 2012

Citation
Peng Zhu, Haofei Shi, and L. Jay Guo, "SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography," Opt. Express 20, 12521-12529 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett.34(7), 890–892 (2009). [CrossRef] [PubMed]
  2. W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005). [CrossRef]
  3. X. B. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett.31(9), 1322–1324 (2006). [CrossRef] [PubMed]
  4. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009). [CrossRef] [PubMed]
  5. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006). [CrossRef] [PubMed]
  6. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006). [CrossRef] [PubMed]
  7. T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index,” Opt. Express17(2), 1136–1143 (2009). [CrossRef] [PubMed]
  8. X. F. Yang, B. B. Zeng, C. T. Wang, and X. G. Luo, “Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer,” Opt. Express17(24), 21560–21565 (2009). [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett.4(6), 1085–1088 (2004). [CrossRef]
  10. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005). [CrossRef] [PubMed]
  11. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004). [CrossRef]
  12. T. Xu, Y. H. Zhao, J. X. Ma, C. T. Wang, J. H. Cui, C. L. Du, and X. G. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express16(18), 13579–13584 (2008). [CrossRef] [PubMed]
  13. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003), Chap. 4, 352–355.
  14. C. C. Yan, D. H. Zhang, Y. A. Zhang, D. D. Li, and M. A. Fiddy, “Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths,” Opt. Express18(14), 14794–14801 (2010). [CrossRef] [PubMed]
  15. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett.29(17), 1992–1994 (2004). [CrossRef] [PubMed]
  16. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9(9), 919–933 (1973). [CrossRef]
  17. A. Locatelli, M. Conforti, D. Modotto, and C. De Angelis, “Diffraction engineering in arrays of photonic crystal waveguides,” Opt. Lett.30(21), 2894–2896 (2005). [CrossRef] [PubMed]
  18. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett.81(16), 3383–3386 (1998). [CrossRef]
  19. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited