OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12593–12598

A 2 × 2 nonblocking Mach–Zehnder-based silicon switch matrix

Weiwei Chen, Wanjun Wang, Weifeng Guo, Zhao Gong, Haiquan Zhou, Qiang Zhou, Xiaoqing Jiang, and Jianyi Yang  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12593-12598 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 2 × 2 non-blocking switch matrix based on the Mach–Zehnder (MZ) interferometer was designed and fabricated on silicon-on-insulator (SOI) wafer through 0.8-μm standard commercial CMOS foundry. The two paired multimode-imaging (MMI) couplers in each MZ switching element were used as power splitters and combiners. Experimental results show that the switching elements are electrically driven with a switching speed of 17.4 ns and its cross-talk is lower than −16.1 dB under a common spectral bandwidth of 35 nm. The total switching power consumption varies from 4.55 mW to 22.4 mW for different switching paths.

© 2012 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.6715) Optoelectronics : Switching

ToC Category:

Original Manuscript: March 21, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 14, 2012
Published: May 18, 2012

Weiwei Chen, Wanjun Wang, Weifeng Guo, Zhao Gong, Haiquan Zhou, Qiang Zhou, Xiaoqing Jiang, and Jianyi Yang, "A 2 × 2 nonblocking Mach–Zehnder-based silicon switch matrix," Opt. Express 20, 12593-12598 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kartner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects [Invited],” J. Opt. Netw.6(1), 63–73 (2007). [CrossRef]
  2. K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag.34(12), 86–94 (1996). [CrossRef]
  3. A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun.E77-B, 155–162 (1994).
  4. K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett.32(16), 1471–1472 (1996). [CrossRef]
  5. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  6. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010). [CrossRef]
  7. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett.22(12), 926–928 (2010). [CrossRef]
  8. Y. T. Li, J. Z. Yu, S. W. Chen, Y. P. Li, and Y. Y. Chen, “Submicrosecond rearrangeable non-blocking silicon-on-insulator thermo-optic 4 × 4 switch matrix,” Opt. Lett.32(6), 603–604 (2007). [CrossRef] [PubMed]
  9. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-Optic silicon switch for on-chip photonic networks,” Opt. Express19(1), 47–54 (2011). [CrossRef] [PubMed]
  10. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett.10(6), 810–812 (1998). [CrossRef]
  11. I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm.6(7), 1267–1272 (1988). [CrossRef]
  12. W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett.23(11), 751–753 (2011). [CrossRef]
  13. H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express17, 7043–7051 (2009). [CrossRef] [PubMed]
  14. Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett.54(3), 635–638 (2012). [CrossRef]
  15. Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE7516, 1–6 (2009).
  16. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991). [CrossRef]
  17. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001). [CrossRef] [PubMed]
  18. N. S. Lagali, M. R. Palam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol.17(12), 2542–2550 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited