OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12599–12609

Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm

Maurizio Casalino, Giuseppe Coppola, Mario Iodice, Ivo Rendina, and Luigi Sirleto  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12599-12609 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, design, fabrication and characterization of an all-silicon photodetector (PD) at 1550 nm, have been reported. Our device is a surface-illuminated PD constituted by a Fabry-Perot microcavity incorporating a Cu/p-Si Schottky diode. Its absorption mechanism, based on the internal photoemission effect (IPE), has been enhanced by critical coupling condition. Our experimental findings prove a peak responsivity of 0.063 mA/W, which is the highest value obtained in a surface-illuminated IPE-based Si PD around 1550 nm. Finally, device capacitance measurements have been carried out demonstrating a capacitance < 5 pF which has the potential for GHz operation subject to a reduction of the series resistance of the ohmic contact.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(250.0250) Optoelectronics : Optoelectronics
(260.5740) Physical optics : Resonance

ToC Category:

Original Manuscript: January 31, 2012
Revised Manuscript: April 13, 2012
Manuscript Accepted: April 26, 2012
Published: May 18, 2012

Maurizio Casalino, Giuseppe Coppola, Mario Iodice, Ivo Rendina, and Luigi Sirleto, "Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm," Opt. Express 20, 12599-12609 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  2. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007). [CrossRef]
  3. A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol.24(3), 1440–1455 (2006). [CrossRef]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  5. H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express15(21), 13539–13546 (2007). [CrossRef] [PubMed]
  6. O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005). [CrossRef]
  7. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010). [CrossRef] [PubMed]
  8. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002). [CrossRef]
  9. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009). [CrossRef]
  10. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007). [CrossRef]
  11. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009). [CrossRef] [PubMed]
  12. M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008). [CrossRef]
  13. M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008). [CrossRef]
  14. M. Casalino, L. Sirleto, M. Iodice, and G. Coppola, Photodetectors (InTech, 2012).
  15. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express18(8), 8505–8514 (2010). [CrossRef] [PubMed]
  16. W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985). [CrossRef]
  17. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008). [CrossRef]
  18. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010). [CrossRef]
  19. O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001). [CrossRef]
  20. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011). [CrossRef] [PubMed]
  21. J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000). [CrossRef]
  22. C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010). [CrossRef] [PubMed]
  23. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995). [CrossRef]
  24. D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).
  25. M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).
  26. H. C. Card, “Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976). [CrossRef]
  27. D. A. G. Bruggeman, “Berechung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfihigkeiten der Mischk6rper aus isotropen Substanzen,” Ann. Phys. Leipzig416(7), 636–664 (1935). [CrossRef]
  28. P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000). [CrossRef]
  29. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  31. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931). [CrossRef]
  32. V. E. Vickers, “Model of schottky barrier hot-electron-mode photodetection,” Appl. Opt.10(9), 2190–2192 (1971). [CrossRef] [PubMed]
  33. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).
  34. G. T. Reed and A. P. Knights, Silicon Photonics: An introduction (John Wiley & Sons, 2005).
  35. G. Coppola, A. Irace, A. Cutolo, and M. Iodice, “Effect of fabrication errors in channel waveguide Bragg gratings,” Appl. Opt.38(9), 1752–1758 (1999). [CrossRef] [PubMed]
  36. S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982). [CrossRef]
  37. A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).
  38. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited