OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12622–12630

Critical coupling control of a microresonator by laser amplitude modulation

Jong H. Chow, Michael A. Taylor, Timothy T-Y. Lam, Joachim Knittel, Jye D. Sawtell-Rickson, Daniel A. Shaddock, Malcolm B. Gray, David E. McClelland, and Warwick P. Bowen  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12622-12630 (2012)
http://dx.doi.org/10.1364/OE.20.012622


View Full Text Article

Acrobat PDF (1354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a laser amplitude modulation technique to actively stabilize the critical coupling of a microresonator by controlling the evanescent coupling gap from an optical fiber taper. It is a form of nulled lock-in detection, which decouples laser intensity fluctuations from the critical coupling measurement. We achieved a stabilization bandwidth of ∼ 20 Hz, with up to 5 orders of magnitude displacement noise suppression at 10 mHz, and an inferred gap stability of better than a picometer/√Hz.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(140.3945) Lasers and laser optics : Microcavities
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Optical Devices

History
Original Manuscript: February 28, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 15, 2012
Published: May 18, 2012

Citation
Jong H. Chow, Michael A. Taylor, Timothy T-Y. Lam, Joachim Knittel, Jye D. Sawtell-Rickson, Daniel A. Shaddock, Malcolm B. Gray, David E. McClelland, and Warwick P. Bowen, "Critical coupling control of a microresonator by laser amplitude modulation," Opt. Express 20, 12622-12630 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12622


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93, 083904 (2004). [CrossRef] [PubMed]
  4. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express13, 5293–5301 (2005). [CrossRef] [PubMed]
  5. J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett.97, 123704 (2010). [CrossRef]
  6. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express, 124742–4750, (2004). [CrossRef] [PubMed]
  7. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85, 3029–3031 (2004). [CrossRef]
  8. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett.30, 427–429 (2005). [CrossRef] [PubMed]
  9. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron.12, 96–107 (2006). [CrossRef]
  10. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A74, 023813 (2006). [CrossRef]
  11. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron.16, 276–287 (2010). [CrossRef]
  12. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011). [CrossRef]
  13. T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A82, 023825 (2010). [CrossRef]
  14. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett.104, 123604 (2010). [CrossRef] [PubMed]
  15. C. Junge, S. Nickel, D. O’Shea, and A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett.36, 3488–3490 (2011). [CrossRef] [PubMed]
  16. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  17. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001). [CrossRef]
  18. P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, 1st ed. (World Scientific, Singapore, 1994).
  19. J. H. Chow, I. C. M. Littler, D. S. Rabeling, D. E. McClelland, and M. B. Gray, “Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy,” Opt. Express16, 7726–7738 (2008). [CrossRef] [PubMed]
  20. D.S. Rabeling, J.H. Chow, M.B. Gray, and D.E. McClelland, “Experimental demonstration of impedance match locking and control of coupled resonators,” Opt. Express18, 9314–9323 (2011). [CrossRef]
  21. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett.24, 847–849 (1999). [CrossRef]
  22. A. Yariv, “Critical coupling and its control in optical wave-guide-ring resonator systems,” IEEE Photon. Technol. Lett.14483–485 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited