OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12631–12639

A time-domain photonic arbitrary waveform generator

Jinxin Liao, He Wen, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12631-12639 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A time domain photonic arbitrary waveform generator (PAWG) scheme based on multi-wavelength optical differential quadrature phase shift keying modulation in combination with differential detection is proposed and experimentally demonstrated. The time domain method shows advantages of large time-bandwidth product, good flexibility, fast waveform refreshing rate, and high waveform quality over the frequency domain method. In contrast with other proposed time domain PAWGs or photonic digital-to-analog converters, our PAWG proposal shows a greater dynamic range and a larger noise margin due to its bipolar output, and possesses good scalabilities both in resolution and sampling rate. Assisted with the integration technology, this PAWG presents a good prospect for broad range practical applications in future.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 21, 2012
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 12, 2012
Published: May 18, 2012

Jinxin Liao, He Wen, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou, "A time-domain photonic arbitrary waveform generator," Opt. Express 20, 12631-12639 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
  2. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Micro. Wirel. Compon. Lett. 15(4), 226–228 (2005).
  3. V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “Reconfigurable RF-waveform generation based on incoherent-filter design,” J. Lightwave Technol. 26(15), 2476–2483 (2008).
  4. C. B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
  5. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008).
  6. V. Torres-Company, A. J. Metcalf, D. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
  7. V. Torres-Company and L. R. Chen, “Radio-frequency waveform generator with time-multiplexing capabilities based on multi-wavelength pulse compression,” Opt. Express 17(25), 22553–22565 (2009).
  8. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
  9. C. H. Lee, Microwave Photonics (Boca Raton, FL: CRC Press, 2007), Chap. 6.
  10. P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5-GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17(12), 2727–2729 (2005).
  11. Y. K. Chen, A. Leven, T. Hu, N. Weimann, K. Tu, V. Houtsma, R. Kopf, and A. Tate, “Photonic generation of microwave and millimeter-wave arbitrary waveforms,” in IEEE Lasers and Electro-Optics Society, Annual Meeting, 419–420 (2008).
  12. A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett. 15(1), 117–119 (2003).
  13. X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett. 43(19), 1044–1045 (2007).
  14. Y. Peng, H. Zhang, Y. Zhang, and M. Yao, “Photonic digital-to-analog converter based on summing of serial weighted multiwavelength Pulses,” IEEE Photon. Technol. Lett. 20(24), 2135–2137 (2008).
  15. T. Nishitani, T. Konishi, H. Furukawa, and K. Itoh, “All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing,” Opt. Express 13(25), 10310–10315 (2005).
  16. S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photon. Technol. Lett. 18(5), 703–705 (2006).
  17. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
  18. J. Liao, H. Wen, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “A 2N-bit bipolar photonic digital-to-analog converter based on multi-wavelength optical DQPSK modulation in combination with balanced detection,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.78.
  19. IEEE standard for terminology and test methods for analog-to-digital converters, IEEE Std 1241–2000 (2001).
  20. Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory,” in proceedings of IEEE Solid-State Circuits Conference, pp.194–196, 2011.
  21. S. Savory and A. Hadjifotiou, “Laser linewidth requirements for optical DQPSK systems,” IEEE Photon. Technol. Lett. 16(3), 930–932 (2004).
  22. S. W. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, R. Muthiah, R. Salvatore, S. Murthy, E. Strzelecka, J. L. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. H. Joyner, F. Kish, and D. F. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
  23. M. Kroh, G. Unterbörsch, G. Tsianos, R. Ziegler, A. G. Steffan, H. G. Bach, J. Kreissl, R. Kunkel, G. G. Mekonnen, W. Rehbein, D. Schmidt, R. Ludwig, K. Petermann, J. Bruns, T. Mitze, K. Voigt, and L. Zimmermann, “Hybrid integrated 40 Gb/s DPSK receiver on SOI,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2009), paper OMK3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited