OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12640–12648

Novel design of solar cell efficiency improvement using an embedded electron accelerator on-chip

Itsara Srithanachai, Surada Ueamanapong, Surasak Niemcharoen, and Preecha P Yupapin  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 12640-12648 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a novel design of an electron accelerator on-chip by using a small scale device known as a PANDA microring resonator, which can be embedded within the solar cell device, where the trapped electron can be accelerated and moved faster to the final destination. Therefore, the solar cell efficiency can be improved. In principle, a PANDA microring can generate the optical tweezers for hole tapping and transportation. The transported holes can be accelerated and moved via the optical waveguide to the solar cell device contact, where the effect of defects in silicon bulk can be solved. Therefore, this technique can be used to improve the solar cells performance. In practice, the accelerator unit can be embedded within the solar cell device, which allows the trapped holes moving to the required destination. This is claimed to be a novel technique by using a PANDA microring to accelerate the holes for solar cell performance improvement. Finally, this technique is the starting point of using a PANDA microring to enhance the performance of semiconductor device.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

Original Manuscript: March 15, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 13, 2012
Published: May 21, 2012

Itsara Srithanachai, Surada Ueamanapong, Surasak Niemcharoen, and Preecha P Yupapin, "Novel design of solar cell efficiency improvement using an embedded electron accelerator on-chip," Opt. Express 20, 12640-12648 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Tiwary and B. B. Dhar, “Environmental pollution from coal mining activities in damodar river basin, India,” Mine Water Environ.13, 1–10 (1994).
  2. S. I. Wilhelm, G. J. Robertson, P. C. Ryan, S. F. Tobin, and R. D. Elliot, “Re-evaluating the use of beached bird oiling rates to assess long-term trends in chronic oil pollution,” Mar. Pollut. Bull.58(2), 249–255 (2009). [CrossRef] [PubMed]
  3. C. J. Camphuysen and M. Heubeck, “Marine oil pollution and beached bird surveys: the development of a sensitive monitoring instrument,” Environ. Pollut.112(3), 443–461 (2001). [CrossRef] [PubMed]
  4. R. Lagring, S. Degraer, G. de Montpellier, T. Jacques, W. Van Roy, and R. Schallier, “Twenty years of Belgian North Sea aerial surveillance: a quantitative analysis of results confirms effectiveness of international oil pollution legislation,” Mar. Pollut. Bull.64(3), 644–652 (2012). [CrossRef] [PubMed]
  5. K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95(1), 288–291 (2011). [CrossRef]
  6. A. Ali, T. Gouveas, M. A. Hasan, S. H. Zaidi, and M. Asghar, “Influence of deep level defects on the performance of crystalline silicon solar cells: Experimental and simulation study,” Sol. Energy Mater. Sol. Cells95(10), 2805–2810 (2011). [CrossRef]
  7. D. M. Tsai, S. C. Wu, and W. C. Li, “Defect detection of solar cells in electroluminescence imange using fourier image reconstruction,” Sol. Energy Mater. Sol. Cells99, 250–262 (2012). [CrossRef]
  8. K. Mukhopadhyay, S. D. Datta, and H. Saha, “Dependence of efficiency on slat angles of microgrooved solar cells,” Sol. Energy Mater. Sol. Cells30, 1717–1722 (2010).
  9. S. Beringer, H. Schilke, I. Lohse, and G. Seckmeyer, “Case study showing that the tilt angle of photovoltaic plants is nearly irrelevant,” Sol. Energy85(3), 470–476 (2011). [CrossRef]
  10. N. Sun, G. Fang, P. Qin, Q. Zheng, M. Wang, X. Fan, F. Cheng, J. Wan, and X. Zhao, “Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode,” Sol. Energy Mater. Sol. Cells94(12), 2328–2331 (2010). [CrossRef]
  11. J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H. W. Schmidt, and D. Haarer, “Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material,” Synth. Met.89(3), 215–220 (1997). [CrossRef]
  12. G. S. Kousik and J. G. Fossum, “P+-n-n+ solar cells with hole diffusion lengths comparable with the base width: A simple analytic model,” Sol. cells 5, 75–79 (1981).
  13. N. Suwanpayak, M. A. Jalil, C. Teeka, J. Ali, and P. P. Yupapin, “Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications,” Biomed. Opt. Express2(1), 159–168 (2011). [CrossRef] [PubMed]
  14. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett.36(24), 4824–4826 (2011). [CrossRef] [PubMed]
  15. N. Suwanpayak, C. Teeka, and P. P. Yupapin, “Hybrid transistor manipulation controlled by light,” Microw. Opt. Technol. Lett.53, 2533–2537 (2011).
  16. M. S. Aziz, N. Suwanpayak, M. A. Jalil, R. Jomtarak, T. Saktioto, J. Ali, and P. P. Yupapin, “Gold nanoparticle trapping and delivery for therapeutic applications,” Int. J. Nanomedicine7, 11–17 (2012). [PubMed]
  17. P. P. Yupapin, “Generalized quantum key distribution via micro ring resonator for mobile telephone networks,” Optik (Stuttg.)121(5), 422–425 (2010). [CrossRef]
  18. S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short-wave and millimeter-wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett.21(13), 932–934 (2009). [CrossRef]
  19. T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P. P. Yupapin, “Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator,” J. Lightwave Technol.28(19), 2804–2809 (2010). [CrossRef]
  20. D. A. Neamen, Semiconductor Physic and Devices, McGraw-Hill, New York (2003).
  21. N. Suwanpayak and P. P. Yupapin, “Drug trapping and delivery using a PANDA ring resonator,” Procedia Eng.8, 252–260 (2011). [CrossRef]
  22. H. Cheun, J. Kim, Y. Zhou, Y. Fang, A. Dindar, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode,” Opt. Express18(S4Suppl 4), A506–A512 (2010). [CrossRef] [PubMed]
  23. D. Han, H. Kim, S. Lee, M. Seo, and S. Yoo, “Realization of efficient semitransparent organic photovoltaic cells with metallic top electrodes: utilizing the tunable absorption asymmetry,” Opt. Express18(S4Suppl 4), A513–A521 (2010). [CrossRef] [PubMed]
  24. D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(S2Suppl 2), A168–A176 (2012). [CrossRef] [PubMed]
  25. J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express20(S2Suppl 2), A157–A167 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited