OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12710–12720

Switching photochromic molecules adsorbed on optical microfibres

U. Wiedemann, W. Alt, and D. Meschede  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12710-12720 (2012)
http://dx.doi.org/10.1364/OE.20.012710


View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The internal state of organic photochromic spiropyran molecules adsorbed on optical microfibres is optically controlled and measured by state-dependent light absorption. Repeated switching between the states is achieved by exposure to the evanescent field of a few nanowatts of light guided in the microfibre. By adjusting the microfibre evanescent field strength the dynamic equilibrium state of the molecules is controlled. Time-resolved photoswitching dynamics are measured and modelled with a rate equation model. We also study how many times the photochromic system can be switched before undergoing significant photochemical degradation.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(260.5130) Physical optics : Photochemistry
(300.6390) Spectroscopy : Spectroscopy, molecular
(160.5335) Materials : Photosensitive materials

ToC Category:
Sensors

History
Original Manuscript: March 29, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 16, 2012
Published: May 21, 2012

Citation
U. Wiedemann, W. Alt, and D. Meschede, "Switching photochromic molecules adsorbed on optical microfibres," Opt. Express 20, 12710-12720 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003). [CrossRef] [PubMed]
  2. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon.1, 107–161 (2009). [CrossRef]
  3. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12, 043001 (2010). [CrossRef]
  4. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010). [CrossRef] [PubMed]
  5. L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers (Springer, Berlin, 2010). [CrossRef]
  6. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express12, 2258–2263 (2004). [CrossRef] [PubMed]
  7. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12, 2864–2869 (2004). [CrossRef] [PubMed]
  8. J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006). [CrossRef]
  9. F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra42, 3, 73 (2008).
  10. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12, 1025–1035 (2004). [CrossRef] [PubMed]
  11. R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011). [CrossRef]
  12. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express15, 11952–11958 (2007). [CrossRef] [PubMed]
  13. H. Dürr and H. Bouas-Laurent, Photochromism: molecules and systems (Elsevier, Amsterdam, 2003).
  14. M. Irie and K. Sayo, “Solvent effects on the photochromic reactions of diarylethene derivatives,” J. Phys. Chem.96, 7671–7674 (1992). [CrossRef]
  15. K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998). [CrossRef]
  16. L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008). [CrossRef]
  17. K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008). [CrossRef]
  18. T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986). [CrossRef]
  19. R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005). [CrossRef] [PubMed]
  20. M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006). [CrossRef] [PubMed]
  21. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000). [CrossRef]
  22. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev.100, 1685–1716 (2000). [CrossRef]
  23. J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988). [CrossRef]
  24. K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010). [CrossRef]
  25. E. Mohn, “Kinetic characteristics of a solid photochromic film,” Appl. Opt.2, 1570–1576 (1973). [CrossRef]
  26. G. H. Brown, Photochromism (John Wiley & Sons, New York, 1971).
  27. V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994). [CrossRef]
  28. V. Malatesta, Organic photochromic and thermochromic compounds 2: Physicochemical studies, biological applications, and thermochromism (KluwerAcademic Press, 1999), Chap. 2. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited