OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12860–12865

Enhanced second-harmonic generation from double resonant plasmonic antennae

Krishnan Thyagarajan, Simon Rivier, Andrea Lovera, and Olivier J.F. Martin  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12860-12865 (2012)
http://dx.doi.org/10.1364/OE.20.012860


View Full Text Article

Enhanced HTML    Acrobat PDF (913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel plasmonic antenna geometry – the double resonant antenna (DRA) – that is optimized for second-harmonic generation (SHG). This antenna is based on two gaps coupled to each other so that a resonance at the fundamental and at the doubled frequency is obtained. Furthermore, the proximity of the localized hot spots allows for a coupling and spatial overlap between the two field enhancements at both frequencies. Using such a structure, both the generation of the second-harmonic and its re-emission into the far-field are significantly increased when compared with a standard plasmonic dipole antenna. Such DRA are fabricated in aluminium using electron beam lithography and their linear and nonlinear responses are studied experimentally and theoretically.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(160.1245) Materials : Artificially engineered materials
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 12, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 20, 2012
Published: May 23, 2012

Citation
Krishnan Thyagarajan, Simon Rivier, Andrea Lovera, and Olivier J.F. Martin, "Enhanced second-harmonic generation from double resonant plasmonic antennae," Opt. Express 20, 12860-12865 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002). [CrossRef] [PubMed]
  3. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012). [CrossRef] [PubMed]
  4. D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J.-P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano6(3), 2542–2549 (2012). [CrossRef] [PubMed]
  5. S. Roke and G. Gonella, “Nonlinear light scattering and spectroscopy of particles and droplets in liquids,” Annu. Rev. Phys. Chem.63(1), 353–378 (2012). [CrossRef] [PubMed]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  7. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A11(11), 114030 (2009). [CrossRef]
  8. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett.103(25), 257404 (2009). [CrossRef] [PubMed]
  9. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B27(3), 408–416 (2010). [CrossRef]
  10. S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-harmonic generation in hydrogenated amorphous-SiN doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett.87(19), 191110 (2005). [CrossRef]
  11. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express19(12), 11415–11421 (2011). [CrossRef] [PubMed]
  12. F. Gesuele, S. Lettieri, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Band-edge and cavity second harmonic conversion in doubly resonant microcavity,” J. Phys. B40(4), 727–734 (2007). [CrossRef]
  13. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  14. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010). [CrossRef]
  15. M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011). [CrossRef] [PubMed]
  16. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green’s tensor approach,” J. Opt. Soc. Am. A18(4), 854–861 (2001). [CrossRef]
  17. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009). [CrossRef] [PubMed]
  18. W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B81(23), 233407 (2010). [CrossRef]
  19. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement,” Opt. Express15(21), 13894–13906 (2007). [CrossRef] [PubMed]
  20. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett.11(1), 61–65 (2011). [CrossRef] [PubMed]
  21. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express16(22), 17196–17208 (2008). [CrossRef] [PubMed]
  22. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  23. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express12(22), 5418–5423 (2004). [CrossRef] [PubMed]
  24. B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, “A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures,” J. Opt. A, Pure Appl. Opt.8(4), S278–S284 (2006). [CrossRef]
  25. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett.12(2), 673–677 (2012). [CrossRef] [PubMed]
  26. M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B105(1), 149–162 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited