OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12866–12876

Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film

Daniel R. Mason, Dmitri K. Gramotnev, and Kwang S. Kim  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12866-12876 (2012)
http://dx.doi.org/10.1364/OE.20.012866


View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyze a new type of mechanically robust optical nanofocusing probe with minimized external environmental interference. The probe consists of a dielectric optical fiber terminated by a dielectric hemisphere – both covered in thin gold film whose thickness is reduced (tapered) along the surface of the hemisphere toward its tip. Thus the proposed probe combines the advantages of the diffraction-limited focusing due to annular propagation of the plasmon with its nanofocusing by a tapered metal wedge (i.e. a metal film with reducing local thickness). The numerical finite-element analysis demonstrates strongly subwavelength resolution of the described structure with the achievable size of the focal spot of ~20 nm with up to ~150 times enhancement of the local electric field intensity. Detailed physical interpretations of the obtained results are presented and possible application as a new type of SNOM probe for subwavelength imaging, spectroscopy and sensing are also discussed.

© 2012 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 23, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 20, 2012
Published: May 23, 2012

Citation
Daniel R. Mason, Dmitri K. Gramotnev, and Kwang S. Kim, "Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film," Opt. Express 20, 12866-12876 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  4. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  5. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007). [CrossRef]
  6. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008). [CrossRef]
  7. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  8. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011). [CrossRef]
  9. K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A237(1-2), 103–105 (1997). [CrossRef]
  10. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007). [CrossRef] [PubMed]
  11. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008). [CrossRef]
  12. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007). [CrossRef]
  13. S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys.107(9), 094301 (2010). [CrossRef]
  14. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008). [CrossRef] [PubMed]
  15. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005). [CrossRef]
  16. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006). [CrossRef]
  17. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  18. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007). [CrossRef]
  19. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  20. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  21. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010). [CrossRef] [PubMed]
  22. M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  23. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B2(9), 1538–1540 (1985). [CrossRef]
  24. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009). [CrossRef]
  25. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  26. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989). [CrossRef] [PubMed]
  27. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003). [CrossRef]
  28. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  29. T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402 (2007). [CrossRef]
  30. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007). [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007). [CrossRef] [PubMed]
  32. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008). [CrossRef]
  33. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009). [CrossRef]
  34. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012). [CrossRef]
  35. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003). [CrossRef] [PubMed]
  36. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005). [CrossRef]
  37. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010). [CrossRef] [PubMed]
  38. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011). [CrossRef] [PubMed]
  39. D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011). [CrossRef] [PubMed]
  40. K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009). [CrossRef]
  41. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340(1-4), 299–302 (2005). [CrossRef]
  42. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011). [CrossRef] [PubMed]
  43. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  44. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011). [CrossRef]
  45. D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009). [CrossRef] [PubMed]
  46. Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited