OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12899–12905

High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers

Kangwen Yang, Wenxue Li, Ming Yan, Xuling Shen, Jian Zhao, and Heping Zeng  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 12899-12905 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 29, 2012
Revised Manuscript: May 12, 2012
Manuscript Accepted: May 21, 2012
Published: May 23, 2012

Kangwen Yang, Wenxue Li, Ming Yan, Xuling Shen, Jian Zhao, and Heping Zeng, "High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers," Opt. Express 20, 12899-12905 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature482(7383), 68–71 (2012). [CrossRef] [PubMed]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  3. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett.105(6), 063001 (2010). [CrossRef] [PubMed]
  4. J. Xu, D. Toptygin, K. J. Graver, R. A. Albertini, R. S. Savtchenko, N. D. Meadow, S. Roseman, P. R. Callis, L. Brand, and J. R. Knutson, “Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGic,” J. Am. Chem. Soc.128(4), 1214–1221 (2006). [CrossRef] [PubMed]
  5. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett.35(20), 3417–3419 (2010). [CrossRef] [PubMed]
  6. G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C. S. Menoni, M. C. Marconi, J. J. Rocca, W. Chao, J. A. Liddle, E. H. Anderson, D. T. Attwood, A. V. Vinogradov, I. A. Artioukov, Y. P. Pershyn, and V. V. Kondratenko, “Nanoimaging with a compact extreme-ultraviolet laser,” Opt. Lett.30(16), 2095–2097 (2005). [CrossRef] [PubMed]
  7. M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet,” Opt. Lett.33(4), 345–347 (2008). [CrossRef] [PubMed]
  8. J. H. Sun, B. J. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4 microm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett.32(11), 1414–1416 (2007). [CrossRef] [PubMed]
  9. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier,” Opt. Lett.35(10), 1713–1715 (2010). [CrossRef] [PubMed]
  10. O. Kuzucu, F. N. Wong, D. E. Zelmon, S. M. Hegde, T. D. Roberts, and P. Battle, “Generation of 250 mW narrowband pulsed ultraviolet light by frequency quadrupling of an amplified erbium-doped fiber laser,” Opt. Lett.32(10), 1290–1292 (2007). [CrossRef] [PubMed]
  11. T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevicius, M. Fermann, and J. Ye, “Optical frequency comb with submilihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008). [CrossRef]
  12. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett.34(5), 638–640 (2009). [CrossRef] [PubMed]
  13. Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett.36(7), 1152–1154 (2011). [CrossRef] [PubMed]
  14. W. Li, Q. Hao, M. Yan, and H. Zeng, “Tunable flat-top nanosecond fiber laser oscillator and 280 W average power nanosecond Yb-doped fiber amplifier,” Opt. Express17(12), 10113–10118 (2009). [CrossRef] [PubMed]
  15. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 x 1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett.32(19), 2870–2872 (2007). [CrossRef] [PubMed]
  16. W. Li, K. Yang, M. Yan, H. Zhou, J. Ding, and H. Zeng, “Long-term carrier-envelope-phase stabilized fiber-bulk hybrid laser with millihertz linewidth and 50 W average power,” Laser Phys.21(3), 531–535 (2011). [CrossRef]
  17. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett.35(18), 3015–3017 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited