OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12939–12948

Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12939-12948 (2012)
http://dx.doi.org/10.1364/OE.20.012939


View Full Text Article

Enhanced HTML    Acrobat PDF (3699 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work reveals a cost-efficient and flexible approach to various microlens arrays on polymers, which is essential to micro-optics elements. An 800-nm femtosecond laser is employed to control the hydrofluoric (HF) acid etching process on silica glasses, and concave microstructures with smooth curved surfaces are produced by this method. Then, the micro-structured glass templates can serve as molds for replicating microlenses on polymers. In this paper, a high-ordered microlens array with over 16,000 hexagonal-shaped lenses is fabricated on poly (dimethyl siloxane) [PDMS], and its perfect light-gathering ability and imaging performance are demonstrated. The flexibility of this method is demonstrated by successful preparation of several concave molds with different patterns which are difficult to be obtained by other methods. This technique provides a new route to small-scaled, smooth and curved surfaces which is widely used in micro-optics, biochemical analysis and superhydrophobic interface.

© 2012 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.5470) Materials : Polymers
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 20, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: May 10, 2012
Published: May 23, 2012

Citation
Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou, "Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces," Opt. Express 20, 12939-12948 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12939


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Biebuyck and G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir10(8), 2790–2793 (1994). [CrossRef]
  2. M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir18(24), 9312–9318 (2002). [CrossRef]
  3. Q. Peng, Y. Guo, S. Liu, and Z. Cui, “Real-time gray-scale photolithography for fabrication of continuous microstructure,” Opt. Lett.27(19), 1720–1722 (2002). [CrossRef] [PubMed]
  4. S. K. Lee, K. C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng.12(3), 334–340 (2002). [CrossRef]
  5. E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett.86(12), 124101 (2005). [CrossRef]
  6. H. J. Nam, D.-Y. Jung, G.-R. Yi, and H. Choi, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres,” Langmuir22(17), 7358–7363 (2006). [CrossRef] [PubMed]
  7. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999). [CrossRef]
  8. R. Guo, S. Z. Xiao, X. M. Zhai, J. W. Li, A. D. Xia, and W. H. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express14(2), 810–816 (2006). [CrossRef] [PubMed]
  9. H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010). [CrossRef] [PubMed]
  10. D. Wu, Q. D. Chen, L. G. Niu, J. N. Wang, J. Wang, R. Wang, H. Xia, and H. B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009). [CrossRef] [PubMed]
  11. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett.97(3), 031109 (2010). [CrossRef]
  12. H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun.282(20), 4119–4123 (2009). [CrossRef]
  13. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. (Berl.)79, 1695–1709 (2004).
  14. W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett.82(23), 4190 (2003). [CrossRef]
  15. H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett.97(6), 061117 (2010). [CrossRef]
  16. M. Budiman, E. M. Hsu, H. K. Haugen, and G. A. Botton, “Cross-sectional study of femtosecond laser bulk modification of crystalline α-quartz,” Appl. Phys., A Mater. Sci. Process.98(4), 849–853 (2010). [CrossRef]
  17. T. H. R. Crawford, J. Yamanaka, E. M. Hsu, G. A. Botton, and H. K. Haugen, “Femtosecond laser irradiation of metal and thermal oxide layers on silicon: studies utilizing cross-sectional transmission electron microscopy,” Appl. Phys., A Mater. Sci. Process.91(3), 473–478 (2008). [CrossRef]
  18. F. C. Chen, W. K. Huang, and C. J. Ko, “Self-organization of microlens arrays caused by the spin-coating-assisted hydrophobic effect,” IEEE Photon. Technol. Lett.18(23), 2454–2456 (2006). [CrossRef]
  19. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express17(22), 19908–19918 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited