OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12975–12986

Experimental and numerical analysis of narrowband coherent Rayleigh–Brillouin scattering in atomic and molecular species

Barry M. Cornella, Sergey F. Gimelshein, Mikhail N. Shneider, Taylor C. Lilly, and Andrew D. Ketsdever  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12975-12986 (2012)
http://dx.doi.org/10.1364/OE.20.012975


View Full Text Article

Enhanced HTML    Acrobat PDF (2306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent Rayleigh–Brillouin scattering (CRBS) line shapes generated from all narrow-band pump experiment, Direct Simulation Monte-Carlo (DSMC) approach, and published kinetic line shape models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The kinetic line shape models require uncertain gas properties, such as bulk viscosity, and assume linearization of the kinetic equations from low intensities (<1 x 1015 W/m2) operating in the perturbative regime. DSMC, a statistical approach to the Boltzmann equation, requires only basic gas parameters available in literature and simulates the forcing function from first principles without assumptions on laser intensity. The narrow band experiments show similar results to broadband experiments and validate the use of DSMC for the prediction of CRBS line shapes.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(290.5820) Scattering : Scattering measurements
(290.5830) Scattering : Scattering, Brillouin
(290.5870) Scattering : Scattering, Rayleigh
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Scattering

History
Original Manuscript: February 17, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: April 23, 2012
Published: May 24, 2012

Citation
Barry M. Cornella, Sergey F. Gimelshein, Mikhail N. Shneider, Taylor C. Lilly, and Andrew D. Ketsdever, "Experimental and numerical analysis of narrowband coherent Rayleigh–Brillouin scattering in atomic and molecular species," Opt. Express 20, 12975-12986 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  2. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
  3. J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett.85(6), 1222–1225 (2000). [CrossRef] [PubMed]
  4. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett.89(18), 183001 (2002). [CrossRef] [PubMed]
  5. X. Pan, P. F. Barker, A. V. Meschanov, R. B. Miles, and J. H. Grinstead, “Temperature measurements in plasmas using coherent Rayleigh scattering,” in Proceedings of the Aerospace Sciences Meeting and Exhibit, AIAA-2001–0416 (Reno, NV, 2001).
  6. X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett.27(3), 161–163 (2002). [CrossRef] [PubMed]
  7. X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A71(4), 045801 (2005). [CrossRef]
  8. M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A82(4), 043836 (2010). [CrossRef]
  9. X. Pan, “Coherent Rayleigh–Brillouin scattering,” Princeton University (Ph.D. Thesis, 2003).
  10. D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett.422(4-6), 571–574 (2006). [CrossRef]
  11. T. Lilly, S. Gimelshein, A. Ketsdever, and M. Shneider, “Energy deposition into a collisional gas from optical lattices formed in an optical cavity,” in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, 533–538, 2008, T. Abe ed. (AIP, New York, 2009).
  12. T. Lilly, A. Ketsdever, and S. Gimelshein, “Resonant laser manipulation of an atomic beam,” in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics, 825–830, 2010, D. Levin ed. (AIP, New York, 2011).
  13. T. Lilly, “Simulated nonresonant pulsed laser manipulation of a nitrogen flow,” Appl. Phys. B104(4), 961–968 (2011). [CrossRef]
  14. M. N. Shneider and P. F. Barker, “Optical Landau damping,” Phys. Rev. A71(5), 053403 (2005). [CrossRef]
  15. M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process.89(2), 337–350 (2007). [CrossRef]
  16. A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B81(1), 101–111 (2005). [CrossRef]
  17. A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B81(1), 113–129 (2005). [CrossRef]
  18. H. Eichler, P. Gunter, and D. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  19. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A69(3), 033814 (2004). [CrossRef]
  20. H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc.37(6), 655–662 (2006). [CrossRef]
  21. A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett.107(17), 173903 (2011). [CrossRef] [PubMed]
  22. E. Hecht, Optics (Addison Wesley, 2002).
  23. T. X. Phuoc, “Laser spark ignition experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun.175(4-6), 419–423 (2000). [CrossRef]
  24. H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett.99(13), 133001 (2007). [CrossRef] [PubMed]
  25. M. S. Ivanov and S. F. Gimelshein, “Current status and prospects of the DSMC modeling of near-continuum flows of non-reacting and reacting gases,” in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics, 2002, A. Ketsdever, ed. (AIP, 2003), pp. 339–348.
  26. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, 1994).
  27. M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics4, 251–268 (1997).
  28. C. Borgnakke and P. Larsen, “Statistical collision model for Monte Carlo simulation of polyatomic gas mixture,” J. Comput. Phys.18(4), 405–420 (1975). [CrossRef]
  29. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys.133(16), 164315 (2010). [CrossRef] [PubMed]
  30. T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett.99(12), 124101 (2011). [CrossRef]
  31. J. G. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids2(4), 449–462 (1959). [CrossRef]
  32. R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys.39(12), 3209–3213 (1963). [CrossRef]
  33. S. F. Gimelshein, I. D. Boyd, and M. S. Ivanov, “DSMC modeling of vibration-translation energy transfer in hypersonic rarefied flows,” in Proceedings of the 33rd AIAA Thermophysics Conference, AIAA-99–3451, 1999.
  34. N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J.41(7), 1323–1331 (2003). [CrossRef]
  35. G. L. Hill and T. G. Winter, “Effect of Temperature on the Rotational and Vibrational Relaxation Times of Some Hydrocarbons,” J. Chem. Phys.49(1), 440–444 (1968). [CrossRef]
  36. J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids13(2), 291–308 (1970). [CrossRef]
  37. R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys.132(24), 244105 (2010). [CrossRef] [PubMed]
  38. D. R. Lide ed., CRC Handbook of Chemistry and Physics 90th ed. (CRC, 2009).
  39. G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica64(2), 278–288 (1973). [CrossRef]
  40. G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A2(12), 2252–2254 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited