OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12987–12996

Equilibrium orientations and positions of non-spherical particles in optical traps

Yongyin Cao, Alexander B Stilgoe, Lixue Chen, Timo A Nieminen, and Halina Rubinsztein-Dunlop  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12987-12996 (2012)
http://dx.doi.org/10.1364/OE.20.012987


View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dynamic simulation is a powerful tool to observe the behavior of arbitrary shaped particles trapped in a focused laser beam. Here we develop a method to find equilibrium positions and orientations using dynamic simulation. This general method is applied to micro- and nano-cylinders as a demonstration of its predictive power. Orientation landscapes for particles trapped with beams of differing polarisation are presented. The torque efficiency of micro-cylinders at equilibrium in a plane is also calculated as a function of tilt angle. This systematic investigation elucidates in both the function and properties of micro- and nano-cylinders trapped in optical tweezers.

© 2012 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 7, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 4, 2012
Published: May 24, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Yongyin Cao, Alexander B Stilgoe, Lixue Chen, Timo A Nieminen, and Halina Rubinsztein-Dunlop, "Equilibrium orientations and positions of non-spherical particles in optical traps," Opt. Express 20, 12987-12996 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970).
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [PubMed]
  3. J. Harris and G. McConnell, “Optical trapping and manipulation of live T cells with a low numerical aperture lens,” Opt. Express16(18), 14036–14043 (2008). [PubMed]
  4. M. C. Zhong, J. H. Zhou, Y. X. Ren, Y. M. Li, and Z. Q. Wang, “Rotation of birefringent particles in optical tweezers with spherical aberration,” Appl. Opt.48(22), 4397–4402 (2009). [PubMed]
  5. M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, J. F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt.48(14), 2720–2730 (2009). [PubMed]
  6. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A459, 3021–3041 (2003).
  7. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A9, S196–S203 (2007).
  8. A. A. R. Neves, A. Fontes, Lde. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express14(26), 13101–13106 (2006). [PubMed]
  9. G. Knöner, T. A. Nieminen, S. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Calculation of optical trapping landscapes,” Proc. SPIE6326, U119–U127 (2006).
  10. A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express16(19), 15039–15051 (2008). [PubMed]
  11. T. A. Nieminen, T. Asavei, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Symmetry and the generation and measurement of optical torque,” J. Quant. Spectrosc. Radiat. Transf.110, 1472–1482 (2009).
  12. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B14, 782–789 (1997).
  13. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B14, 3323–3333 (1997).
  14. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophoton.3(4), 187–206 (2010). [PubMed]
  15. R. C. Gauthier and A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure,” Appl. Opt.39(18), 3060–3070 (2000). [PubMed]
  16. H. Ukita and H. Kawashima, “Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position,” Appl. Opt.49(10), 1991–1996 (2010). [PubMed]
  17. P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation Detection in Light-Driven Nanorotors,” ACS Nano3(10), 3077–3084 (2009). [PubMed]
  18. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt.58, 528–544 (2011).
  19. V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf.110, 1460–1471 (2009).
  20. S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express19(17), 16526–16541 (2011). [PubMed]
  21. P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micro-propeller,” J. Appl. Phys.101, 023106 (2007).
  22. S. D. Tan, H. A. Lopez, C. W. Cai, and Y. G. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4, 1415–1419 (2004).
  23. J. L. Zhang, T. G. Kim, S. C. Jeoung, F. F. Yao, H. Lee, and X. D. Sun, “Controlled trapping and rotation of carbon nanotube bundle with optical tweezers,” Opt. Commun.267, 260–263 (2006).
  24. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007). [PubMed]
  25. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express18(2), 822–830 (2010). [PubMed]
  26. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett.100(16), 163903 (2008). [PubMed]
  27. S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A27(6), 1255–1264 (2010). [PubMed]
  28. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton.2, 021875 (2008).
  29. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transf.79–80, 1019–1029 (2003).
  30. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A68, 033802 (2003).
  31. C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys.111, 8825–8831 (1999).
  32. O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn.32, 71–92 (2003).
  33. E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys.45, 3–11 (1977).
  34. J. G. Garcia de la Torre and V. A. Bloomfield, “Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications,” Q. Rev. Biophys.14(1), 81–139 (1981). [PubMed]
  35. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142, 468–471 (2001).
  36. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett.102(11), 113602 (2009). [PubMed]
  37. H. K. Moffat, “Six Lectures on General Fluid Dynamics and Two on Hydromagnetic Dynamo Theory,” in Fluid Dynamics, R. Balian and J.-L. Peube eds., (Gordon and Breach, 1977), pp. 149–234.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (2552 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited