OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13040–13054

Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity

G. C. R. Devarapu and S. Foteinopoulou  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13040-13054 (2012)
http://dx.doi.org/10.1364/OE.20.013040


View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate mid-IR absorption enhancement with a SiC one-dimensional photonic crystal (PC) microstructure at the frequency regime of the phonon-polariton band gap, where efficient absorption is unattainable in the bulk material. Our study reveals an intricate relationship between absorption efficiency and the energy velocity of light propagation, that is far more complex than hitherto believed. In particular, our findings suggest that absorption peaks away from the photonic-crystal band edge where energy velocity is minimum. While efficient absorption is still associated with a slow-light mode, the latter is faster by at least an order of magnitude in comparison to the bulk material. Moreover, our calculations suggest that absorption becomes optimal when light gradually slow downs as it enters the PC. Relying on this insight, we achieved near-perfect absorption around the phonon-polariton mid-gap frequency with a PC with a suitably terminated end face. We further demonstrate that the near-perfect absorptive property can be tuned with the incident light angle, to be polarization insensitive or polarization selective. We believe our proposed non-metallic paradigm opens up a new route for harnessing infrared absorption with semiconductor and ionic-crystal materials.

© 2012 OSA

OCIS Codes
(160.1890) Materials : Detector materials
(160.6000) Materials : Semiconductor materials
(230.5440) Optical devices : Polarization-selective devices
(300.1030) Spectroscopy : Absorption
(350.3950) Other areas of optics : Micro-optics
(160.1245) Materials : Artificially engineered materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 26, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 19, 2012
Published: May 24, 2012

Citation
G. C. R. Devarapu and S. Foteinopoulou, "Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity," Opt. Express 20, 13040-13054 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaics,” Nat. Mat.9, 205–213 (2010). [CrossRef]
  2. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009). [CrossRef]
  3. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chadran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34, 686–688 (2009). [CrossRef] [PubMed]
  4. G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys.97, 093104 (2005). [CrossRef]
  5. R. A Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mat.21, 3504–3509 (2009). [CrossRef]
  6. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010). [CrossRef]
  7. Y. Cui, K. Hung Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012). [CrossRef] [PubMed]
  8. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-indepedent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011). [CrossRef] [PubMed]
  9. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94, 191102 (2009). [CrossRef]
  10. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Crystalline Solids354, 2757–2762 (2008). [CrossRef]
  11. S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011). [CrossRef] [PubMed]
  12. C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Tech.52, 348–352 (2009). [CrossRef]
  13. L. Hutchinson, “Breast cancer: Challenges, controversies, breakthroughs,” Nat. Rev. Clin. Onco.7, 669–670 (2010). [CrossRef]
  14. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20, 1538–1541 (2003). [CrossRef]
  15. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B72, 165112 (2005). [CrossRef]
  16. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98, 241105 (2011). [CrossRef]
  17. J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photon. Technol. Lett.24, 31–33 (2012). [CrossRef]
  18. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, 2005).
  19. J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett.91, 203003 (2003). [CrossRef] [PubMed]
  20. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  21. P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B75, 075422 (2007). [CrossRef]
  22. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15, 4253–4267 (2007). [CrossRef] [PubMed]
  23. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84, 035128 (2011). [CrossRef]
  24. P. Yeh, Optical waves in layered media (Wiley-Interscience, 2005).
  25. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media 1. General theory,” J. Opt. Soc. Am.67, 423–438 (1977). [CrossRef]
  26. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
  27. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299, 309–312 (2002). [CrossRef]
  28. G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A: Pure Appl. Opt.8, 973–980 (2006). [CrossRef]
  29. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3, 233–245 (1970). [CrossRef]
  30. M. Bergmair, M. Huber, and K. Hingerl, “Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals,” Appl. Phys. Lett.89, 081907 (2006). [CrossRef]
  31. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B71, 085106 (2005). [CrossRef]
  32. S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett.85, 4269–4271 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited