OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13065–13070

Toroidal dipole response in a multifold double-ring metamaterial

Zheng-Gao Dong, Peigen Ni, Jie Zhu, Xiaobo Yin, and X. Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13065-13070 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The toroidal response is numerically investigated in a multifold double-ring metamaterials at the antibonding magnetic-dipole mode (i.e., antiparallel magnetic dipoles in one double-ring fold). This intriguing toroidal resonance in metamaterials is considered as a result of the magnetoelectric effect due to the broken balance of the electric near-field environment. We demonstrate that the toroidal dipole response in metamaterials can improve the quality factor of the resonance spectrum. In viewing of the design flexibility on the double-ring geometry, such toroidal metamaterials will offer advantages in application potentials of toroidal dipolar moment.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 6, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 21, 2012
Published: May 25, 2012

Zheng-Gao Dong, Peigen Ni, Jie Zhu, Xiaobo Yin, and X. Zhang, "Toroidal dipole response in a multifold double-ring metamaterial," Opt. Express 20, 13065-13070 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009). [CrossRef]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  5. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009). [CrossRef]
  6. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science330(6010), 1510–1512 (2010). [CrossRef] [PubMed]
  7. Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express20(2), 1760–1768 (2012). [CrossRef] [PubMed]
  8. N. Papasimakis, V. A. Fedotov, K. Marinov, and N. I. Zheludev, “Gyrotropy of a metamolecule: wire on a torus,” Phys. Rev. Lett.103(9), 093901 (2009). [CrossRef] [PubMed]
  9. K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys.9(9), 324 (2007). [CrossRef]
  10. W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, “Nuclear anapole moments,” Phys. Rev. C Nucl. Phys.65(4), 045502 (2002). [CrossRef]
  11. A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett.80(9), 1861–1864 (1998). [CrossRef]
  12. W. C. Haxton, “Atomic parity violation and the nuclear anapole moment,” Science275(5307), 1753–1754 (1997). [CrossRef]
  13. V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep.187(4), 145–202 (1990). [CrossRef]
  14. M. Fiebig, D. Frohlich, K. Kohn, S. Leute, T. Lottermoser, V. V. Pavlov, and R. V. Pisarev, “Determination of the Magnetic symmetry of Hexagonal Manganites by Second Harmonic Generation,” Phys. Rev. Lett.84(24), 5620–5623 (2000). [CrossRef] [PubMed]
  15. C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys.129(8), 084706 (2008). [CrossRef] [PubMed]
  16. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express18(21), 22412–22417 (2010). [CrossRef] [PubMed]
  17. Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, and S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008). [CrossRef]
  18. P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan, “Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016604 (2009). [CrossRef] [PubMed]
  19. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009). [CrossRef]
  20. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express18(17), 17997–18002 (2010). [CrossRef] [PubMed]
  21. Z.-G. Dong, H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett.96(4), 044104 (2010). [CrossRef]
  22. F. M. Wang, H. Liu, T. Li, Z. G. Dong, S. N. Zhu, and X. Zhang, “Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016604 (2007). [CrossRef] [PubMed]
  23. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.84(15), 2943–2945 (2004). [CrossRef]
  24. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  25. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B79(8), 085111 (2009). [CrossRef]
  26. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  27. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  28. C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited