OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13091–13099

Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique

Fei Qin, Zi-Ming Meng, Xiao-Lan Zhong, Ye Liu, and Zhi-Yuan Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13091-13099 (2012)
http://dx.doi.org/10.1364/OE.20.013091


View Full Text Article

Enhanced HTML    Acrobat PDF (3866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1150) Optical devices : All-optical devices
(110.4235) Imaging systems : Nanolithography
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 27, 2012
Revised Manuscript: April 21, 2012
Manuscript Accepted: April 23, 2012
Published: May 25, 2012

Citation
Fei Qin, Zi-Ming Meng, Xiao-Lan Zhong, Ye Liu, and Zhi-Yuan Li, "Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique," Opt. Express 20, 13091-13099 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.73(10), 1368–1371 (1994). [CrossRef] [PubMed]
  2. M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys.41(1), 015401 (2008). [CrossRef]
  3. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87(15), 151112 (2005). [CrossRef]
  4. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2(3), 185–189 (2008). [CrossRef]
  5. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett.95(13), 131116 (2009). [CrossRef]
  6. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007). [CrossRef]
  7. H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007). [CrossRef]
  8. X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater.21(10), 1803–1809 (2011). [CrossRef]
  9. R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett.88(16), 161112 (2006). [CrossRef]
  10. S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE6593, 65931K, 65931K-11 (2007). [CrossRef]
  11. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.99(10), 103105 (2006). [CrossRef]
  12. S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett.91(22), 221109 (2007). [CrossRef]
  13. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B25(10), 1562–1567 (2008). [CrossRef]
  14. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000). [CrossRef]
  15. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett.29(24), 2858–2860 (2004). [CrossRef] [PubMed]
  16. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett.75(7), 932–934 (1999). [CrossRef]
  17. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater.20(23), 4584–4587 (2008). [CrossRef]
  18. F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys.108(5), 053108 (2010). [CrossRef]
  19. F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt.12(3), 035209 (2010). [CrossRef]
  20. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett.67(21), 3114–3116 (1995). [CrossRef]
  21. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B14(6), 4129–4133 (1996). [CrossRef]
  22. E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron.50, 1043–1047 (2005).
  23. C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).
  24. L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A207(12), 2715–2725 (2010). [CrossRef]
  25. L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express17(12), 9962–9970 (2009). [CrossRef] [PubMed]
  26. Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express16(26), 21483–21491 (2008). [CrossRef] [PubMed]
  27. http://ab-initio.mit.edu/wiki/index.php/Meep .
  28. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  29. T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron.12, 1123–1134 (2006). [CrossRef]
  30. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett.26(23), 1903–1905 (2001). [CrossRef] [PubMed]
  31. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  32. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express15(25), 17248–17253 (2007). [CrossRef] [PubMed]
  33. Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett.93(24), 241107 (2008). [CrossRef]
  34. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A73(5), 051803 (2006). [CrossRef]
  35. Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express19(3), 1945–1953 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited