OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13108–13114

Control of dispersion in photonic crystal waveguides using group symmetry theory

Pierre Colman, Sylvain Combrié, Gaëlle Lehoucq, and Alfredo De Rossi  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13108-13114 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate dispersion tailoring by coupling the even and the odd modes in a line-defect photonic crystal waveguide. Coupling is determined ab-initio using group theory analysis, rather than by trial-error optimisation of the design parameters. A family of dispersion curves is generated by controlling a single geometrical parameter. This concept is demonstrated experimentally with very good agreement with theory.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: March 7, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 12, 2012
Published: May 25, 2012

Pierre Colman, Sylvain Combrié, Gaëlle Lehoucq, and Alfredo De Rossi, "Control of dispersion in photonic crystal waveguides using group symmetry theory," Opt. Express 20, 13108-13114 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  2. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  3. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett.31, 1295–1297 (2006). [CrossRef] [PubMed]
  4. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  5. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystalwaveguides,” Opt. Express17, 14634–14648 (2009). [CrossRef] [PubMed]
  6. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003). [CrossRef] [PubMed]
  7. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett.85, 1101–1103 (2004). [CrossRef]
  8. A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Sel. Area. Commun.23, 1396–1401 (2005). [CrossRef]
  9. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14, 9444–9450 (2006). [CrossRef] [PubMed]
  10. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34, 1072–1074 (2009). [CrossRef] [PubMed]
  11. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett.85, 4866–4868 (2004). [CrossRef]
  12. M. Patterson, S. Hughes, D. Dalacu, and R. L. Williams, “Broadband purcell factor enhancements in photonic-crystal ridge waveguides,” Phys. Rev. B80, 125307 (2009). [CrossRef]
  13. S. Lü, J. Zhao, and D. Zhang, “Flat band slow light in asymmetric photonic crystal waveguide based on microfluidic infiltration,” Appl. Opt.49, 3930–3934 (2010). [CrossRef] [PubMed]
  14. X. Mao, Y. Huang, W. Zhang, and J. Peng, “Coupling between even- and oddlike modes in a single asymmetric photonic crystal waveguide,” Appl. Phys. Lett.95, 183106 (2009). [CrossRef]
  15. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett.20, 1237–1239 (2008). [CrossRef]
  16. N. Gutman, W. Dupree, Y. Sun, A. Sukhorukov, and C. de Sterke, “Frozen and broadband slow light in coupled periodic nanowire waveguides,” Opt. Express20, 3519–3528 (2012). [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001). [CrossRef] [PubMed]
  18. O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: a simple model based upon symmetry analysis,” Phys. Rev. B68, 035110 (2003). [CrossRef]
  19. S. Combrié, Q. V. Tran, A. D. Rossi, C. Husko, and P. Colman, “High quality gainp nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108 (2009). [CrossRef]
  20. A. Parini, P. Hamel, A. De Rossi, S. Combrie, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouen, and G. Vadala, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008). [CrossRef]
  21. Q. V. Tran, S. Combrié, P. Colman, and A. D. Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95, 061105 (2009). [CrossRef]
  22. Y. Vlasov, W. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2, 242–246 (2008). [CrossRef]
  23. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008). [CrossRef]
  24. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. Ó Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “On-chip tunable delay lines in silicon photonics,” IEE Photon. J.2, 181–194 (2010). [CrossRef]
  25. S. Schultz, L. O’Faolain, D. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12, 104004 (2010). [CrossRef]
  26. P. Colman, S. Combrié, I. Cestier, A. Willinger, G. Eisenstein, A. de Rossi, and G. Lehoucq, “Observation of gain due to four-wave-mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36, 2629–2631 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited