OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13138–13145

Distributed vibration sensing with time-resolved optical frequency-domain reflectometry

Da-Peng Zhou, Zengguang Qin, Wenhai Li, Liang Chen, and Xiaoyi Bao  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13138-13145 (2012)
http://dx.doi.org/10.1364/OE.20.013138


View Full Text Article

Enhanced HTML    Acrobat PDF (1480 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The distributed vibration or dynamic strain information can be obtained using time-resolved optical frequency-domain reflectometry. Time-domain information is resolved by measuring Rayleigh backscatter spectrum in different wavelength ranges which fall in successive time sequence due to the linear wavelength sweep of the tunable laser source with a constant sweeping rate. The local Rayleigh backscatter spectrum shift of the vibrated state with respect to that of the non-vibrated state in time sequence can be used to determine dynamic strain information at a specific position along the fiber length. Standard single-mode fibers can be used as sensing head, while the measurable frequency range of 0–32 Hz with the spatial resolution of 10 cm can be achieved up to the total length of 17 m.

© 2012 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Sensors

History
Original Manuscript: March 29, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 21, 2012
Published: May 25, 2012

Citation
Da-Peng Zhou, Zengguang Qin, Wenhai Li, Liang Chen, and Xiaoyi Bao, "Distributed vibration sensing with time-resolved optical frequency-domain reflectometry," Opt. Express 20, 13138-13145 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt.20, 1060–1074 (1981). [CrossRef] [PubMed]
  2. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express16, 10240–10247 (2008). [CrossRef] [PubMed]
  3. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett.30, 3284–3286 (2005). [CrossRef]
  4. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol.232081–2087 (2005). [CrossRef]
  5. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt.46, 1968–1971 (2007). [CrossRef] [PubMed]
  6. Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett.23, 1091–1093 (2011). [CrossRef]
  7. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett.24, 542–544 (2012). [CrossRef]
  8. E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE1586, 46–52 (1991). [CrossRef]
  9. S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” J. Lightwave Technol.19, 205–213 (2001). [CrossRef]
  10. Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun.281, 1538–1544 (2008). [CrossRef]
  11. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt.37, 1735–1740 (1998). [CrossRef]
  12. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13, 666–674 (2005). [CrossRef] [PubMed]
  13. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interfeometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.
  14. M. Froggatt, D. K. Gifford, S. T. Kreger, M. S. Wolfe, and B. J. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC5.
  15. R. G. Duncan, B. J. Soller, D. K. Gifford, S. T. Kreger, R. J. Seeley, A. K. Sang, M. S. Wolfe, and M. E. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” presented at the Joint Conference on Aging Aircraft (2007). http://www.lunatechnologies.com/applications/OFDR-Based-Distributed-Sensing.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited