OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13146–13163

Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties

D. Macías, P.-M. Adam, V. Ruíz-Cortés, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13146-13163 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1713 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this contribution, we propose a computational tool for the synthesis of metallic nanowires with optimized optical properties, e.g. maximal scattering cross-section at a given wavelength. For this, we employ a rigorous numerical method, based on the solution of surface integral equations, along with a heuristic optimization technique that belongs to the population-based set known as Evolutionary Algorithms. Also, we make use of a general representation scheme to model, in a more realistic manner, the arbitrary geometry of the nanowires. The performance of this approach is evaluated through some examples involving various wavelengths, materials, and optimization strategies. The results of our numerical experiments show that this hybrid technique is a suitable and versatile tool straightforwardly extensible for the design of different configurations of interest in Plasmonics.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.3200) Scattering : Inverse scattering
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: March 29, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 30, 2012
Published: May 25, 2012

D. Macías, P.-M. Adam, V. Ruíz-Cortés, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, "Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties," Opt. Express 20, 13146-13163 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  2. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220, 137–141 (2003). [CrossRef]
  3. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A21, 1761–1768 (2004). [CrossRef]
  4. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72, 195429 (2005).
  5. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007). [CrossRef]
  6. V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater.20, 4288–4293 (2008). [CrossRef]
  7. W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A. L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express17, 21228–21239 (2009). [CrossRef] [PubMed]
  8. U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express18, 17322–17338 (2010). [CrossRef] [PubMed]
  9. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19, 23386–23399 (2011). [CrossRef] [PubMed]
  10. E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale3, 4042–4059 (2011). [CrossRef] [PubMed]
  11. V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6, 2498–2507 (2010). [CrossRef] [PubMed]
  12. C. G. Khoury and T. Vo-Dinh, “Gold nanostars for surface-enhanced raman scattering: synthesis, characterization and optimization,” J. Phys. Chem. C112, 18849–18859 (2008).
  13. P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology19, 015606 (2008). [CrossRef] [PubMed]
  14. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett.94, 153113 (2009). [CrossRef]
  15. S. Barbosa, A. Agrawal, L. Rodríguez-Lorenzo, I. Pastoriza-Santos, R. A. Alvarez-Puebla, A. Kornowski, H. Weller, and L. M. Liz-Marzán, “Tuning size and sensing properties in colloidal gold nanostars,” Langmuir26, 14943–14950 (2010). [CrossRef] [PubMed]
  16. L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, F. J. García de Abajo, and L. M. Liz-Marzán, “Surface-enhanced Raman scattering using star-shaped gold colloidal nanoparticles,” J. Phys. Chem. C114, 7336–7340 (2010). [CrossRef]
  17. S. K. Dondapati, T. K. Sau, C. Hrelescu, T. A. Klar, F. D. Stefani, and J. Feldmann, “Label-free biosensing based on single gold nanostars as plasmonic transducers,” ACS Nano4, 6318–6322 (2010). [CrossRef] [PubMed]
  18. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jackel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett.11, 402–407 (2011). [CrossRef] [PubMed]
  19. V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A24, 2822–2830 (2007). [CrossRef]
  20. V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics5, 99–104 (2010). [CrossRef]
  21. R. Rodríguez-Oliveros and J. A. Sánchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express19, 12208–12219 (2011). [CrossRef] [PubMed]
  22. R. Rodríguez-Oliveros and J. A. Sánchez-Gil, “Gold nanostars as thermoplasmonic nanoparticles for optical heating,” Opt. Express20, 621–626 (2012). [CrossRef] [PubMed]
  23. M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Nat. Bur. Stand.49, 409–436 (1952).
  24. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nanoparticles,” Nano Lett.11, 2329–2333 (2011). [CrossRef] [PubMed]
  25. D. Macías and A. Vial, “Optimal design of plasmonic nanostructures for plasmon-interference assisted lithography,” Appl. Phys. B93, 159–163 (2008). [CrossRef]
  26. T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008). [CrossRef] [PubMed]
  27. I. Grigorenko, S. Haas, A. Balatsky, and A. F. J. Levi, “Optimal control of electromagnetic field using metallic nanoclusters,” New J. Phys.10, 043017 (2008). [CrossRef]
  28. C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett.35, 133–135 (2010). [CrossRef] [PubMed]
  29. S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Selective and collaborative optimization methods for plasmonics: a comparison,” PIERS Online7, 291–295 (2011).
  30. A. Tassadit, D. Macías, J. A. Sánchez-Gil, P. M. Adam, and R. Rodríguez-Oliveros, “Metal nanostars: stochastic optimization of resonant scattering properties,” Superlattice Microst.49, 288–293 (2011). [CrossRef]
  31. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes,” Opt. Express19, 2847–2858 (2011). [CrossRef]
  32. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012) [CrossRef] [PubMed]
  33. R. Wehrens and M. B. Lutgarde, “Classical and nonclassical optimization methods,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 9678–9689.
  34. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  35. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express15, 17736–17746 (2007). [CrossRef] [PubMed]
  36. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two-dimensional particles,” J. Opt. Soc. Am. B20, 2150–2161 (2003). [CrossRef]
  37. D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004). [CrossRef]
  38. D. Macías, G. Olague, and E. R. Méndez, “Inverse scattering with far-field intensity data: random surfaces that belong to a well-defined statistical class,” Wave Random Complex16, 545–560 (2006). [CrossRef]
  39. H. G. Beyer, The Theory of Evolution Strategies (Springer-Verlag, 2001).
  40. J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot.90, 333–338 (2003). [CrossRef] [PubMed]
  41. T. Wriedt, “Using the T-Matrix method for light scattering computations by non-axisymmetric particles: superel-lipsoids and realistically shaped particles,” Part. Part. Syst. Charact4, 256–268 (2002). [CrossRef]
  42. J. G. Digalakis and K. G. Margaritis, “An experimental study of benchmarking functions for genetic algorithms,” Intern. J. Computer Math.77, 481–506 (2002). [CrossRef]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  44. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE,1995), pp. 39–43. [CrossRef]
  45. R. Poli, J. Kennedy, and T. Blackwell, “Particle Swarm Optimisation: an overview,” Swarm Intell.1, 33–57 (2007). [CrossRef]
  46. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett10, 1405–1408 (2010). [CrossRef] [PubMed]
  47. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11, 1280–1283 (2011). [CrossRef] [PubMed]
  48. F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14, 023035 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (570 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited