OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13195–13200

Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding

Mehul Malik, Malcolm O’Sullivan, Brandon Rodenburg, Mohammad Mirhosseini, Jonathan Leach, Martin P. J. Lavery, Miles J. Padgett, and Robert W. Boyd  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13195-13200 (2012)
http://dx.doi.org/10.1364/OE.20.013195


View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.

© 2012 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(200.2605) Optics in computing : Free-space optical communication
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 25, 2012
Revised Manuscript: May 17, 2012
Manuscript Accepted: May 21, 2012
Published: May 25, 2012

Citation
Mehul Malik, Malcolm O’Sullivan, Brandon Rodenburg, Mohammad Mirhosseini, Jonathan Leach, Martin P. J. Lavery, Miles J. Padgett, and Robert W. Boyd, "Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding," Opt. Express 20, 13195-13200 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proc. IEEE Int. Conf., 175–179 (Bangalore, 1984).
  2. P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller, and J. E. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys.8, 193–193 (2006). [CrossRef]
  3. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3, 481–486 (2007). [CrossRef]
  4. M. Bourennane, A. Karlsson, G. Bjork, N. Gisin, and N. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A-Math. Gen.35, 10065–10076 (2002). [CrossRef]
  5. S. Groblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys.8, 75 (2006). [CrossRef]
  6. N. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-Level systems,” Phys. Rev. Lett.88, 127902 (2002). [CrossRef] [PubMed]
  7. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett.94, 153901 (2005). [CrossRef] [PubMed]
  8. G. Tyler and R. W. Boyd, “Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett.34, 142–144 (2009). [CrossRef] [PubMed]
  9. B. Smith and M. Raymer, “Two-photon wave mechanics,” Phys. Rev. A74, 062104 (2006). [CrossRef]
  10. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A25, 225–230 (2008). [CrossRef]
  11. F. Roux, “Infinitesimal-propagation equation for decoherence of an orbital-angular-momentum-entangled biphoton state in atmospheric turbulence,” Phys. Rev. A83, 053822 (2011). [CrossRef]
  12. W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys.-New York191, 363–381 (1989). [CrossRef]
  13. V. Arrizon, U. Ruiz, R. Carrada, and L. A. Gonzalez, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A24, 3500–3507 (2007). [CrossRef]
  14. M. T. Gruneisen, W. A. Miller, R. C. Dymale, and A. M. Sweiti, “Holographic generation of complex fields with spatial light modulators: application to quantum key distribution,” Appl. Opt.47, A32–A42 (2008). [CrossRef] [PubMed]
  15. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105, 153601 (2010). [CrossRef]
  16. M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express20, 2110–2115 (2012). [CrossRef] [PubMed]
  17. A. T. Young, “Seeing: its cause and cure,” Astrophys. J.189, 587–604 (1974). [CrossRef]
  18. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am.55, 1427–1431 (1965). [CrossRef]
  19. C. M. Harding, R. A. Johnston, and R. G. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt.38, 2161–2170 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited