OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13284–13295

N × N polymer matrix switches using thermo-optic total-internal-reflection switch

Young-Tak Han, Jang-Uk Shin, Sang-Ho Park, Hyung-Jong Lee, Wol-Yon Hwang, Hyo-Hoon Park, and Yongsoon Baek  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13284-13295 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed fully non-blocking optical matrix switches using a thermo-optic polymer 1 × 2 total-internal-reflection (TIR) switch as a unit switching element. The TIR switch consists of crossed multimode polymer waveguides and an offset heater electrode at the switching node. The fabricated 4 × 4 and 8 × 8 optical matrix switch chips show excellent switching performances. The insertion losses are less than 2.5 and 4.5 dB for the 4 × 4 and 8 × 8 matrix switches, respectively, and their switching isolations during a turned-off state are higher than 38 dB. The switching time is about 3 ms, and the power consumption for each switching element is below 30 mW. Compact integration of the 4 × 4 and 8 × 8 switch chips is achieved at sizes of 25 mm × 4.25 mm, and 42.4 mm × 5 mm, respectively, through an optimization of the waveguide and heater geometries.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

ToC Category:
Integrated Optics

Original Manuscript: April 4, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: May 14, 2012
Published: May 29, 2012

Young-Tak Han, Jang-Uk Shin, Sang-Ho Park, Hyung-Jong Lee, Wol-Yon Hwang, Hyo-Hoon Park, and Yongsoon Baek, "N × N polymer matrix switches using thermo-optic total-internal-reflection switch," Opt. Express 20, 13284-13295 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag.34(12), 86–94 (1996). [CrossRef]
  2. A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).
  3. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006). [CrossRef]
  4. J. E. Fouquet, “Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,” in Proceedings of Opt. Fiber Commun. Conf. Tech. Dig. Postconference Edition. Trends Opt. and Photon.37, (Washington, DC, 2000), 204–206.
  5. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10(3), 358–360 (1998). [CrossRef]
  6. T. Goh, A. M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol.19(3), 371–379 (2001). [CrossRef]
  7. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal30(5), 744–746 (2008). [CrossRef]
  8. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett.21(20), 1556–1558 (2009). [CrossRef]
  9. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal31(6), 770–777 (2009). [CrossRef]
  10. R. Hauffee, U. Siebel, and K. Petermann, “Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch,” IEEE Photon. Technol. Lett.13(3), 200–202 (2001). [CrossRef]
  11. J. Fujita, T. Izuhara, A. Radojevic, R. Gerhardt, and L. Eldada, “Ultrahigh index contrast planar polymeric strictly non-blocking 1024×1024 cross-connect switch matrix,” in Proceedings of Integrated Photonics Research Conf.IThC3, (San Francisco, Calif., 2004).
  12. Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun.258(1), 18–22 (2006). [CrossRef]
  13. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron.12(5), 997–1000 (2006). [CrossRef]
  14. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal33(2), 275–278 (2011). [CrossRef]
  15. ChemOptics Inc, http://www.chemoptics.co.kr

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited